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1
FOUNDATIONS

1.1 Sets

A set S is a collection of objects s, called elements, and we write s ∈ S. To define a

given set is to define the elements it contains. Sometimes we do it by listing ele-

ments explicitly; for instance the natural numbers are

N= {1,2,3, . . .},

and the integers are

Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}

The initial segments are the sets

[n] = {1,2,3, . . . ,n}

where n ∈ N. If X and Y are two sets, we write Y ⊆ X if for each y ∈ Y we have

y ∈ X , and then we call Y a subset of X . We can also cut out subsets of a given set

by imposing constraints. For instance, the perfect squares are the set

PS = {n ∈N : n = m2 for some m ∈N} = {m2 : m ∈N}.

If X and Y are sets

X ∪Y = {z : z ∈ X or z ∈ Y }, X ∩Y = {z : z ∈ X and z ∈ Y }
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and more generally, if X is a collection of sets then⋃
X∈X

X = {x : x ∈ X for some X ∈X },
⋂

X∈X

X = {x : x ∈ X for all X ∈X }.

We also write

X \ Y = {x ∈ X : x ̸∈ Y }, X∆Y = (X ∪Y ) \ (X ∩Y ).

The cartesian product of X and Y is the set

X ×Y = {(x, y) : x ∈ X , y ∈ Y }.

We can define an arbitrary cartesian product of a collection X of sets X as

×
X∈X

X = {(xX )X∈X : xX ∈ X for each X ∈X }

where the point (xX )X∈X has one coordinate, xX , for each set X in X . However, in

defining this cartesian product we may require the Axiom of Choice.

Axiom 1.1: Axiom of Choice

For any collection X of non-empty sets, we have

×
X∈X

X ̸= ;.

We might also use an index set I , which is to say, suppose that for each i ∈ I , we

have some set Xi . Then

×
i∈I

Xi = {(xi )i∈I : xi ∈ Xi for each i ∈ I }.

For example

{0,1}N =×
i∈N

{0,1} = {(e1,e2, . . .) : ei ∈ {0,1} for each i ∈N}.

This set is called the infinite boolean cube. Another interesting collection of sets

are the direct sums. One such direct sum is⊕
i∈N

Z= {(n1,n2, . . .) ∈×
i∈N

Z : ni ̸= 0 for only finitely many values of i }.

Some other important sets are

Q= {a/b : a,b ∈Z,b > 0}

and the real numbers R, which we take as given.

4



1.2 Functions

A function f between sets X and Y is a map f : X → Y which takes an input from X

and produces and output f (x) ∈ Y . Strictly speaking, we construct f as the graph

Γ f ⊆ X ×Y given as

Γ f = {(x, y) ∈ X ×Y : y = f (x)}

where, to be a graph, Γ f passes the vertical line test: for each x ∈ X there is a unique

y ∈ Y such that (x, y) ∈ Γ f .

If f : X → Y is a function then we call X the domain and Y the co-domain. For a

subset X ′ ⊆ X , the image of X ′ under f is the set

f (X ′) = { f (x) : x ∈ X ′}

and for Y ′ ⊆ Y , the pre-image of Y ′ under f is the set

f −1(Y ′) = {x ∈ X : f (x) ∈ Y ′},

where, despite the notation, we make no guarantees about the invertibility of f .

The function f : X → Y is said to be surjective (or a surjection) if f (X ) = Y , or said

differently, for each y ∈ Y there is some x ∈ X with f (x) = y . The function f is said

to be injective if f −1({y}) is empty or a singleton (i.e. has one element) for each

y ∈ Y , or said differently, f (x1) = f (x2) if and only if x1 = x2. A function which is

both injective and surjective is called bijective.

For example the function

□ :R→R, □(x) = x2

is neither injective nor surjective, but

� :R→R, �(x) = x3

is bijective.

A set A is finite if there is an injection f : A → [n] for some n ∈ N. We can just as

well insist that A be in bijection with some [m]. Indeed, if f : A → [n] is an injection,

then since [n] is ordered, we may write

f (A) = {i1, . . . , im} ⊆ [n]

for some i1 < i2 < . . . < im , listed in order. Since there is a unique element al ∈ A

such that f (al ) = il , we define a bijection e : A → [m] by the rule

e(ai ) = i .

This map e is called an enumeration of A, and the number m is called the cardinal-

ity of A, denoted |A|.
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Sets which are infinite are said to have the same cardinality if there is a bijection

between them. A useful tool in this area is the Schröder-Bernstein theorem.

Theorem 1.1: Schröder-Bernstein

If there exist injections f : X → Y and g : Y → X then there is a bijection

h : X → Y .

Example. There is a bijection from φ :Nr →N.

Proof. There is an injection f :N→N×N given by

f ( j ) = ( j ,1,1, . . . ,1).

Going the other way, we can define

g (i1, i2, . . . , ir ) = 2i 3 j . . . p ir
r ,

where p1 = 2, p2 = 3, . . . , pr are the first r primes.

Example. There is a bijection from φ :Q→N.

Proof. Again the injection from N to Q is easy. Going the other way, we can map Q

to N×N×N by encoding q ∈ Q as a reduced fraction q = ea/b where a,b > 0 and

share no common factor, and e = 1, 0 or −1. The map f (q) = (2+ e, a,b) defines in

injection fromQ→N3, and we already know there is a bijection fromN3 toN.

A set which is in bijection withN is called countable (or countably infinite).

Example. The set
⊕

i∈NZ is countable.

Proof. The map n 7→ (n,0,0, . . .) defines an injection from N to
⊕

i∈NZ. Going the

other way, we first enumerate the primes as

P = {2,3,5, . . .} = {p1, p2, . . .}

and define a map

φ :
⊕
i∈N

Z→Q; φ(r1,r2, . . .) =
∞∏

i=1
pri

i

where the product on the right hand side is really a finite one, since the condition

of belonging to the direct sum is that only finitely many values of ri are non-zero.

Since prime factorization is unique, this map defines an injection.
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1.3 Relations

When A is a set, a subset R ⊆ A× A is called a relation, and we write

a ∼R b ⇐⇒ (a,b) ∈R.

There are a few properties which relations can have that often crop up.

1. Reflexive: The relation R is called reflexive if a ∼R a for each a ∈ A.

2. Symmetric: The relation R is called symmetric if a ∼R b ⇐⇒ b ∼R for each

a,b ∈ A.

3. Anti-symmetric: The relation R is called anti-symmetric if a ∼R b and b ∼R

a imply a = b.

4. Transitive: The relation R is called transitive if a ∼R b and b ∼R c imply

a ∼R c for all a,b,c ∈ A.

A relation which is reflexive, symmetric and transitive is called an equivalence

relation.

Example. The relation a ∼R b ⇐⇒ a = b defines an equivalence relation on an set.

Example. The relation a ∼R b ⇐⇒ a = b = 0 or ab > 0 defines an equivalence

relation onZ. Indeed, aa = a2 > 0 unless a = 0 shows the relation is reflexive, ab = ba

yields symmetry, and if a ∼R b and b ∼R c then either a = b = 0 and b = c = 0 which

means a = c = 0, or else ab > 0 and bc > 0 so that ab2c > 0 and since b2 > 0 we get

ac > 0, giving transitivity.

For the rest of this section, we’ll assume we have a set A with an equivalence rela-

tion ∼ on it. For a ∈ A, the set

[a] = {b ∈ A : b ≡ a}

is called the equivalence class of a.

Lemma 1.1

If a ∼ b then [a] = [b], while if a ̸∼ b then [a]∩ [b] =;.

Proof. Suppose a ∼ b, then for c ∈ [a], we have c ∼ a and so c ∼ b by transitivity.

Thus c ∈ [b] and hence [a] ⊆ [b]. By symmetry, [b] ⊆ [a].

Now suppose that a ̸∼ b. If c ∈ [a]∩ [b] then a ∼ c and c ∼ b by transitivity, so

a ∼ b, which is not the case.
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From this, it follows that we can speak of an equivalence class without reference

to an explicit element. Let C denote the collection of equivalence classes of A.

Lemma 1.2

The set C partitions A in the sense that the elements of C are pairwise dis-

joint, non-empty, and ⋃
C∈C

C = A.

Proof. Distinct classes are pairwise disjoint by the preceding lemma. Since a ∈ [a]

and [a] ∈C , we have ⋃
C∈C

C = A.

A set R is called a complete set of representatives for the relation if for each C ∈C

there exists a unique r ∈ R with r ∈C . Thus

A = ⋃
r∈R

[r ]

is the partition from the above lemma.

Example. Let A be a set with the trivial relation a ∼ b ⇐⇒ a = b. Then R = A is the

only possible set of representatives since [a] = {a} for each a ∈ A.

Example. Let

A = { f : (0,∞) → (0,∞)}

and define the relation

f ∼ g ⇐⇒ lim
x→∞

f (x)

g (x)
= 1.

A complete set of representatives for this relation is tough to pin down. That it exists

comes from the Axiom of Choice.

Example. Let

A =R
and define the relation

x ∼ y ⇐⇒ x − y ∈Z.

A complete set of representatives for this relation is explicit: it’s the interval [0,1), or

any unit interval for that matter.
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We say a function f : A → B is well-defined with respect to the equivalence re-

lation ∼ on A provided a ∼ b =⇒ f (a) = f (b). This allows us to descend from a

function on A to a function on the equivalence classes of A without running into

ambiguity – we just set f̃ ([a]) = f (a) and this doesn’t change if we write [a] = [b] for

some other bã.

Example. The functions which are well defined with respect to the relation from the

previous example are the 1-periodic functions. Fourier analysis (and harmonic anal-

ysis more broadly) studies this topic in depth.

Example. This time we define A = R and let our equivalence relation be defined by

x ∼ y ⇐⇒ x − y ∈Q. We have

[x] = x +Q
and the set x +Q intersects every unit interval. Thus we can find a complete set of

representatives V which is completely contained in (0,1]. The set V is called a Vitali

set.

1.4 Partial Orders

A relation which is antisymmetric and transitive is called a partial order. We usually

denote such a relation by a ⪯R b or just a ⪯ b. The relation is called a partial order

because it does not guarantee that any two elements are comparable. If the partial

order further satisfies a ⪯ b or b ⪯ a for any a and b then it is called a total order.

Example. We define a partial order on the natural numbers by a ⪯ b if a divides

b. Indeed a = 1 · a; if a = mb and b = na then a = mna so mn = 1 which forces

m = n = 1; and if b = ma and c = nb then c = (mn)a. The order is partial, not total,

since 2 and 3 are incomparable.

If we replaceN by Z, this ceases to be a partial order since a|−a and −a|a.

Example. Let X be a non-empty set. Then ⊆ defines a partial order on 2X . If X

contains at least two elements, then the order is not total: the sets {a} and {b} with

a ̸= b are not comparable.

Example. Let X be any collection of sets. We would like to define a partial order

on X by A ⪯ B if there exists an injection from A to B. However this will fail to

be antisymmetric: there are injections from {a} to {b} and vice-versa, but they are

not the same set. This can be resolved by defining an equivalence relation on X by

A ≡ B if there is a bijection from A to B and defining the order on equivalence classes:

[A] ⪯ [B ] if there is an injection from A to B. Unfortunately this order appears to be

dependent on A and B, which could be problematic if we choose other representatives

from [A] and [B ]. This turns out not to be the case: if A ∼ A′ and B ∼ B ′ then there
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is a bijection f : A′ → A, and injection i : A → B and a bijection g : B → B ′, so that

g ◦ i ◦ f : A′ → B ′ is an injection. What this means is that if we to represent [A] =
[A′] and [B ] = [B ′] by different representatives, the order relation would still hold.

Furthermore, if [A] ⪯ [B ] and [B ] ⪯ [A] then there are injections from A to B and

from B to A. By the Schröder-Bernstein theorem, there must be a bijection from A to

B, so that [A] = [B ]. Thus on the level of equivalence classes, ⪯ does define a partial

order.

Definition 1.1: Chain

If X is a set partially ordered by ⪯ and Y is a subset of X , then Y is also par-

tially ordered by ⪯, just by restriction our field of vision to Y . If Y is totally

ordered by this partial order, we call Y a chain.

Example. Returning toNwith the division ordering, we see that while the entirety of

N is not totally ordered (remember, 2 and 3 are incomparable), the set {1,2,4,8, . . .} =
{2 j : j ≥ 0} is totally ordered with respect to division, and so forms a chain.

Definition 1.2: Upper bound, maximal element

If X is a set partially ordered by ⪯ and Y is a subset of X , then an element u is

said to be an upper bound for Y if y ⪯ u for each y ∈ Y . An element m is said

to be maximal if m ⪯ x implies m = x. Note that maximal elements need not

be upper bounds for things – the definition of maximality does not require m

be comparable to anything.

Axiom 1.2: Zorn’s Lemma

Let X be a partially ordered set with the following property: if Y is a chain in

X , then there is a u ∈ X which is an upper bound for Y . Then X contains a

maximal element.

We now give an application of Zorn’s lemma, which is a prototypical example of

how to use it. One should think of this as a form of induction, however we aren’t

using the natural number to index our statements.

Theorem 1.2

Let A and B be non-empty sets. Then there is either an injection i : A → B or

else an injection j : B → A.
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Proof. Let

I = {(A′, f ) : A′ ⊆ A, f : A′ → B an injection}

be the set of partial injections from A to B . In other words, I consists of the sub-

domains A′ ⊆ A on which an injection f : A′ → B exists. We’d like to show that there

is an (A, i ) ∈I , which would mean we could define an injection on all of A.

For now, I is not empty. Indeed, since A and B are non-empty, we can choose

some a ∈ A and b ∈ B and define f (a) = b so that ({a}, f ) ∈I . This singleton set {a}

is a far cry from all of A, but its sole purpose is to show I is non-empty, which you

should think of as the base case of our induction.

The set I is partially ordered as follows: if (A1, i1) and (A2, i2) belong to I , we

write (A1, i1) ⪯ (A2, i2) if A1 ⊆ A2 and the injection i2 extends i1 in the sense that

where they are both defined, they do the exact same thing:

i2(a) = i1(a) if a ∈ A1.

We next show this really is a partial order.

To see transitivity, suppose (A1, i1) ⪯ (A2, i2) and (A2, i2) ⪯ (A3, i3). Then, by defi-

nition, A1 ⊆ A2 ⊆ A3, the maps i j : Ai → B are injections for j = 1,2,3, and if a ∈ A1

then i2(a) = i1(a) while if a ∈ A2 then i3(a) = i2(a). Hence if a ∈ A1, we also have

a ∈ A2 and so

i3(a) = i2(a) = i1(a)

which shows that i3 extends i1. This tells us (A1, i1) ⪯ (A3, i3).

For asymmetry, suppose (A1, i1) ⪯ (A2, i2) and vice-versa. Then A1 ⊆ A2 and A2 ⊆
A1, so in fact A1 = A2 as sets. Moreover, on A1, i2(a) = i1(a). But A1 is all of A2, so i1

and i2 agree everywhere. This shows (A1, i1) = (A2, i2).

So we have a non-empty, partially ordered set I on our hands, and we’d like to

apply Zorn’s Lemma to it. In order to do so, we need to establish the chain condi-

tion. So let C be a chain in I . This means that C is a subset of I and any two

elements of C are comparable under the partial order ⪯. Our task is to find an ele-

ment of I which is an upper bound for C .. Each element of C is a pair, say (C , iC )

where C ⊆ A and iC : C → B is an injection. To find an upper bound for C , we need

a pair (U , iU ) where U is a domain that is bigger than every domain C coming from

C , and iU : U → B is an injection extending each injection iC from C . Let

U = ⋃
(C ,iC )∈C

C ,

so U is the union of all the domains that come from C . It immediately follows

that C ⊆ U whenever (C , iC ) ∈ C . We have our domain, now we need to set about

defining an injection. It is here that we will use that C is a chain. If a ∈ U , pick
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some C to which a belongs. Define iU : U → B by iU (a) = iC (a). In this way we have

defined a function from iU . It remains to show it is an injection, and it extends each

iC

To see that iU is an extension of iC , suppose a ∈ C . We defined iU (a) to be iC ′(a)

where C ′ was some domain, possibly distinct from C . But (C , iC ) and (C ′, iC ′) are

both elements of C and C is a chain, so either C ′ ⊆ C and iC ′ extends iC or vice-

versa. In any case, a ∈C ∩C ′ and iC = iC ′ on their intersection. So iU (a) = iC ′(a) by

definition of iU and iC ′(a) = iC (a). Thus iU (a) = iC (a) and iU indeed extends iC .

Now let’s show iU is injective. To that end, suppose iU (a1) = iU (a2) for some

a1, a2 ∈ U . Thus there is some C1 and C2 (the sets we used to define iU at each

a j ) with a1 ∈C1, a2 ∈C2 and

iC1 (a1) = iC2 (a2).

Again because C is a chain, we can assume without loss of generality that C1 ⊆ C2

and iC1 extends iC2 . So iC2 (a1) = iC2 (a2). However, iC2 is an injection, whence a1 =
a2. This concludes the proof that iU is an injection. Hence (U , iU ) ∈ I and is an

upper bound for C , allowing us to apply Zorn’s Lemma.

From a maximal element we want to conclude the proof of this theorem. You

should think of this as proving the inductive step. Suppose (M , i ) is a maximal ele-

ment of I . So M is a subset of A and i : M → B is an injection. If M = A we’re done.

If i is surjective, then i is a bijection between M and B , and i−1 is an injection from

B to A, which also completes the proof. So assume that neither holds: M ̸= A and

i (M) ̸= B . Choose a ∈ A \M and b ∈ B \i (M). Let M ′ = M∪{a} and define i ′ : M ′ → B

by i ′(a) = b and i ′(a′) = i (a′) for a ∈ M . The function i ′ is injective on M , since i is,

and if a′ ∈ M then

i ′(a) = b ̸= i (a′) = i ′(a′).

So we have successfully extended the injection i to the injection i ′, contradicting

the maximality of (M , i ).

This proof is long, and that’s because there are a lot of details to check. None of

those details is particularly tough to check however, and so you should think of the

proof as this: what is the largest subset of A on which we can define an injection to

B . Zorn’s Lemma tells us such a subset must exist, but if it doesn’t exhaust A, and its

image doesn’t exhaust B , then we can easily extend this injection by just one more

element, and that is a violation of maximality.
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2
ANALYSIS ON METRIC SPACES

2.1 Metric Spaces

Definition 2.1: Metric Space

A metric space (X ,d) is a set X endowed with a metric function

d : X ×X → [0,∞)

which satisfies the following rules, for all x, y, z ∈ X

Positivity: d(x, y) = 0 ⇐⇒ x = y ,

Symmetry: d(x, y) = d(y, x), and

Triangle inequality: d(x, y) ≤ d(x, z)+d(z, y).

We’ll give some examples below, not always with a proof, just yet.

Example. The most fundamental example is R (or a subset of R) endowed with the

distance

d(x, y) = |x − y |.
The properties of the metric are easy to check, and you should recognize the triangle
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inequality for d as merely the triangle inequality |x − y | ≤ |x − z|+ |z − y |.
Example. The space Rn with the l p -metric is defined by

d(x, y) =
(

n∑
i=1

|xi − yi |p
)1/p

.

Example. The space Rn with the l∞-metric is defined by

d(x, y) = max
1≤i≤n

|xi − yi |.

Indeed, d(x, y) ≥ 0 and (1), and (2) of the metric properties are easy. For the triangle

inequality, we have

d(x, y) = max
1≤i≤n

|xi−yi | ≤ max
1≤i≤n

(|xi − zi |+ |zi − yi |
)≤ max

1≤i≤n

(
|xi − zi |+ max

1≤i≤n
|zi − yi |

)
= d(x, z)+d(z, y).

Examine the two inequalities in the above line and be sure you understand them.

Example. The space of continuous function f : [0,1] →R is denoted C [0,1]. All such

functions are bounded, since [0,1] is compact. Thus it makes sense to define

d( f , g ) = sup
x∈[0,1]

| f (x)− g (x)|.

Check that this is a metric on the space of functions C [0,1]. The proof is much the

same as in the preceding example.

2.2 Inner product spaces and normed vector spaces

Let V be a vector space (or any dimension, possible infinite) over R. It is often

the case that V can be endowed with a notion of size that will allow us to measure

distance.

Definition 2.2: Normed Space

A real vector space V is said to be a normed space if there is a function

∥ ·∥ : V → [0,∞)

with the properties

Positivity: ∥v∥ = 0 ⇐⇒ v = 0,

Scaling: ∥c · v∥ = |c|∥v∥, and

Triangle inequality: ∥u + v∥ ≤ ∥u∥+∥v∥.
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The relevance of normed spaces is that they give us nice metric spaces.

Lemma 2.1: Norms give metrics

If V is a normed space then V is also a metric space with the metric

d(u, v) = ∥u − v∥.

Proof. We only verify the triangle inequality, the other properties are immediate

from the definition of norm. Indeed, if u, v, w ∈V then

d(u, v) = ∥u − v∥ = ∥(u −w)+ (w − v)∥ ≤ ∥u −w∥+∥w − v∥ = d(u, w)+d(w, v).

A particularly nice type of normed space is a (real)-inner product space.

Definition 2.3: Real inner product space

A real vector space V is said to be an inner product space if there is a function

〈·, ·〉 : V ×V →R

with the following properties

Positivity: 〈v, v〉 ≥ 0 with equality if and only if v = 0,

Symmetry: 〈u, v〉 = 〈v,u〉,

Linearity: 〈u + cv, w〉 = 〈u, w〉+ c〈v, w〉.

The following is left as an exercise.

Lemma 2.2

Let V be a real inner product space, suppose u1, . . . ,um , v1, . . . , vn ∈ V , and

suppose c1, . . . ,cm ,d1, . . . ,dn ∈R. Then〈
m∑

i=1
ci ui ,

n∑
j=1

d j v j

〉
=

m∑
i=1

n∑
j=1

ci d j 〈ui , v j 〉.
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Theorem 2.1: The Cauchy-Schwarz Inequality

Suppose u, v ∈V for some real inner product space V . Then

〈u, v〉2 ≤ 〈u,u〉〈v, v〉.

Moreover, the inequality is strict unless u = t v for some t ∈R.

Proof. Fix u, v ∈V and consider the function of t ∈R defined by

Q(t ) = 〈u − t v,u − t v〉 = 〈u,u〉−2t〈u, v〉+ t 2〈v, v〉,

by the preceding lemma. On the one hand Q(t ) is a quadratic polynomial in t , and

on the other, it’s of the form 〈w, w〉 with w = u − t v and so the inner product prop-

erty (1) tells us Q(t ) ≥ 0, and Q(t ) = 0 only if u = t v . Thus the discriminant of the

polynomial Q is non-negative, and zero only if Q has a root. But Q has discriminant

(−2〈u, v〉)2 −4(〈v, v〉)(〈u,u〉) ≤ 0.

This rearranges to the claimed inequality, and equality can only only hold if Q(t ) = 0

for some t whence u = t v for that same t .

Corollary 2.1

Let V be a real inner product space. Then ∥v∥ =p〈v, v〉 is a norm on V .

Proof. We prove the triangle inequality for norms and leave the rest to the reader.

By definition

∥u∥2 = 〈u,u〉,∥v∥2 = 〈v, v〉, ∥u + v∥2 = 〈u + v,u + v〉 = ∥u∥2 +2〈u, v〉+∥v∥2.

From the Cauchy-Schwarz inequality,

∥u+v∥2 = ∥u∥2+2〈u, v〉+∥v∥2 ≤ ∥u∥2+2|〈u, v〉|+∥v∥2 ≤ ∥u∥2+2∥u∥∥v∥+∥v∥2 = (∥u∥+∥v∥)2.

This prove that Rn with the l 2 metric is indeed a metric space.

Example. Again let C [0,1] denote the space of functions f : [0,1] → R. With point-

wise addition and scalar multiplication, we can think of C [0,1] as a real vector

space. In fact, it is an inner product space with

〈 f , g 〉 =
∫ 1

0
f (x)g (x)d x.

16



The norm induced by this inner product is called the L2 norm

∥ f ∥L2 =
(∫ 1

0
| f (x)|2d x

)1/2

,

and the metric is

d( f , g ) =
(∫ 1

0
| f (x)− g (x)|2d x

)1/2

,

which is an average of how far apart f and g tend to be.

2.3 Metric spaces, topologically

Definition 2.4: Topological space

A set X with a collection U ⊆P (X ) of subsets of X is said to be a topological

space if U has the following properties

1. ;∈U and X ∈U ,

2. for any collection U ′ ⊆U we have⋃
U∈U ′

U ∈U ,

which is to say that U is closed under arbitrary unions, and

3. for U1, . . . ,Un ∈U , we have

U1 ∩·· ·∩Un ∈U

which is to say that U is closed under finite intersections.

We call the sets U ∈U open.

We are going to define open sets in a metric space X so that it becomes a topolog-

ical space.

Definition 2.5: Open ball

If (X ,d) is a metric space, x ∈ X and ρ > 0 then the open ball of radius ρ

centred at x is the set

B(x,ρ) = {y ∈ X : d(x, y) < ρ}.

17



Definition 2.6: Open set

If (X ,d) is a metric space, a subset U ⊆ X is said to be open if for every x ∈U ,

there is some ρ = ρx > 0 (which can depend on x) such that B(x,ρx) ⊆U .

Lemma 2.3

The open sets in a metric space define a topology.

Proof. The fact that X is open is trivial and the fact that ; is open is vacuous. Sup-

pose U is a collection of open sets and suppose x ∈⋃
U∈U U . Then x ∈U ′ for some

U ′, and since U ′ is open,

B(x,ρ) ⊆U ′ ⊆ ⋃
U∈U

U

for some ρ > 0. Meanwhile if x ∈U1∩·· ·Un for some open sets U1, . . . ,Un then there

are positive numbers ρ j such that

B(x,ρ j ) ⊆U j .

Letting ρ = min{ρ j : 1 ≤ j ≤ n}, we have ρ > 0 since the minimum is over a finite set.

One should verify that B(x,ρ) ⊆ B(x,ρ j ) for each j and then we deduce B(x,ρ) ⊆U j

for each j as well. Thus B(x,ρ) ⊆U1 ∩·· ·∩Un .

With open sets in hand we can define a continuous function between metric

spaces.

Definition 2.7: Continuity, uniform continuity

Let (X1,d1) and (X2,d2) be metric spaces and suppose f : X1 → X2 is a func-

tion. We say f is continuous at x ∈ X if for each ε> 0 there is some δ> 0 such

that d1(x, y) < δ implies d2( f (x), f (y)) < ε. We say that f is continuous if it’s

continuous at each x ∈ X . We say f is uniformly continuous if for ε> 0 there

is some δ> 0 such that d2( f (x), f (y)) for all x, y with d1(x, y) < δ.

Note that, for vanilla continuity, δ depends both on the value of ε and the point x

where f is continuous. For uniform continuity, δ is only allowed to depend on ε.

18



2.4 Convergence, Closed sets, and Completeness

Definition 2.8: Sequence, convergent sequence, Cauchy-

Sequence

A sequence in a metric space (X ,d) (or in a subset Y of X ) is a function

x : N → X (or x : N → Y ), but we will just write xn for x(n), and {xn} for

the whole sequence. The sequence is said to converge to x if for any ε > 0

there is a threshold N such that d(x, xn) < ε for n ≥ N , and we write xn → x.

The sequence is called Cauchy if for ε > 0 there is a threshold N such that

d(xm , xn) < ε for n,m ≥ N .

Definition 2.9: Closed set

A set F in a metric space (X ,d) is closed if either of the following equivalent

conditions holds: any sequence {xn} of points in F has a limit in F , or, F c is

open.

Lemma 2.4

Convergent sequences are Cauchy.

Proof. Suppose xn → x. Let ε > 0 and choose N so large that d(xn , x) < ε/2 for

n ≥ N . Then if m,n ≥ N , we have

d(xm , xn) ≤ d(xm , x)+d(x, xn) < ε.

A partial converse of the above lemma is that Cauchy sequences are guaranteed

to converge once a potential limit has been identified.

Lemma 2.5

Suppose a Cauchy sequence {xn} has a subsequence converging to x. Then

xn → x

In general metric spaces, Cauchy sequences may not converge.

Definition 2.10: Complete space

The metric space (X ,d) is called complete if every Cauchy sequence in X con-

verges.
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Theorem 2.2

The space Rwith the usual metric d(x, y) = |x − y | is complete.

Theorem 2.3

The metric space Rn with the l 2 metric d(x, y) = (∑n
i=1(xi − yi )2

)1/2
is com-

plete.

Proof. Let {xk } be a Cauchy sequence. Each xk is a vector, which we write as

xk = (xk (1), . . . , xk (n)),

and the Cauchy condition tells us that(
n∑

i=1
(xk (i )−x j (i ))2

)1/2

< ε

provided j and k are sufficiently large. But then

max
i

|xk (i )−x j (i )| < ε

too, and this tells us that each sequence {xk (i )}k is a Cauchy sequence in R, and so

converges to some x(i ). We claim xk → x, for if ε> 0 we can find some N such that

|xk (i )−x(i )| < ε/
p

n whenever k ≥ N , and from this

d(xk , x) =
(

n∑
i=1

(xk (i )−x(i ))2

)1/2

< ε.

The idea of the above theorem is to “bootstrap” the completeness of R to that of

Rn . The vectors xk = (xk (1), . . . , xk (n)) can just as well be thought of as functions

xk : [N ] →R. In that spirit, we also have the following.

Theorem 2.4

The space C [0,1] with metric

d( f , g ) = sup
x

| f (x)− g (x)|

is complete.

To prove this we’ll need a bit of nomenclature concerning the convergence of

functions.
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Definition 2.11: Pointwise and uniform convergence

Let X be a subset of R and for each n, suppose fn : X → R is a function. We

say fn → f : X →R if for each x ∈ X , and for each ε> 0 there is an N such that

| fn(x)− f (x)| < ε once n ≥ N . In other words, for each x ∈ X , the sequence

{ fn(x)}n of real numbers converges to f (x). This convergence is called uni-

form if for ε > 0 there is an N such that | fn(x)− f (x)| < ε for all x, that is, N

depends on ε, but not on x.

Lemma 2.6

If fn : X → R is a sequence of continuous (resp. uniformly continuous) func-

tions converging uniformly to f : X → R, then f : X → R is also continuous

(resp. uniformly continuous).

Proof. Let x, y ∈ X . Let ε> 0 and suppose n is so large that | fn(z)− f (z)| < ε/3 for all

z ∈ X . Choose δ= δ(x,ε) (resp. δ= δ(ε)) so that |x − y | < δ implies | fn(x)− fn(y)| <
ε/3. Then

| f (x)− f (y)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(y)|+ | fn(y)− f (y)| < ε/3+ε/3+ε/3.

We can also upgrade Lemma 2.4 to the uniform convergence setting.

Lemma 2.7

Suppose { fn : X →R}n is uniformly Cauchy sequence of functions in the sense

that for ε> 0 and m,n sufficiently large

| fn(x)− fm(x)| < ε

holds for all x ∈ X . Furthermore, suppose there is a subsequence { fnk } con-

verging uniformly to f . Then fn → f uniformly as well.

Proof. Let N be so large that | fnk (x)− f (x)| < ε/2 for all x ∈ X once k > N and fur-

thermore, that | fn(x)− fm(x)| < ε/2 for all x ∈ X once m,n ≥ N . Then

| f (x)− fn(x)| ≤ | f (x)− fnk (x)|+ | fnk (x)− fn(x)| < ε

provided k,n > N (using, implicitly, that nk ≥ k).

Proof of Theorem 2.4. Let { fn} be a Cauchy sequence of functions. Then

sup
x

| fn(x)− fm(x)| < ε
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provided m,n are sufficiently large. Thus for any x, if n,m are large enough, we

know | fn(x)− fm(x)| < ε, which tells us the sequence { fn(x)}n is Cauchy, and hence

convergent to some number f (x). Thus there is a function f : [0,1] → R which we

have identified as a potential limit of our sequence. However, it’s hard to tell if f

should be continuous (and hence in C [0,1]) just yet. More to the point, we know

that for each x, fn(x) → f (x), which is pointwise convergence, but for fn → f in our

metric, we need

sup
x

| fn(x)− f (x)| < ε
which is uniform convergence.

So, we would like fn(x) to converge uniformly. But actually, the metric on C [0,1]

already tells us that a Cauchy sequence is uniformly Cauchy, so we need only iden-

tify a uniformly convergent subsequence and apply the preceding lemma. To that

end, for k ∈N, let nk be chosen in an increasing fashion so that

sup
x

| fn(x)− fm(x)| < 1

2k

when n,m ≥ nk , and in particular, so that

sup
x

| fnk (x)− fnk+1 (x)| < 1

2k
.

Now we apply the “summation trick"

fnk (x) = fn1 (x)+
k−1∑
j=1

fnk+1 (x)− fnk (x).

Because fn(x) → f (x), we know fnk (x) → f (x) as well, and so, as a series

f (x) = fn1 (x)+
∞∑

j=1
fnk+1 (x)− fnk (x)

and

| f (x)− fnk (x)| =
∣∣∣∣∣ ∞∑

j=k
fnk+1 (x)− fnk (x)

∣∣∣∣∣≤ ∞∑
j=k

∣∣ fnk+1 (x)− fnk (x)
∣∣< ∞∑

j=k
2− j = 21−k ,

which gives uniform convergence.

Definition 2.12: Closure

Let Y be a set in a metric space (X ,d). The closure of Y , denoted Y , is the

intersection of all closed sets containing Y , or equivalently,

Y = {z : there is some sequence {yn} in Y with yn → z}.

The closure of Y is closed, and is the smallest closed set containing Y .
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Definition 2.13: Denseness

A set B is said to be dense in A if A ⊆ B .

Theorem 2.5: Existence of Completion

For any metric space (X ,d), there is a complete metric space (X̃ , d̃) and an

injection

i : X → X̃

such that

d(x, y) = d̃(i (x), i (y))

for x, y ∈ X and i (X ) is dense in X̃ .

We won’t prove this here, but I’ll give some homework problems that outline the

construction. Instead, here’s a classic theorem that will foreshadow some approx-

imation theorems we’ll see later in the course. The idea of the proof is a precursor

to Monte Carlo methods, which uses some notion of randomness to approximate

something deterministic.

Theorem 2.6: Weierstrass Approximation

The polynomial functions

R[x] =
{

d∑
j=0

c j x j : c0, . . . ,cd ∈R
}

are dense in C [0,1].

Proof. We’ll assume for this proof that we know f ∈C [0,1] is in fact uniformly con-

tinuous. This we shall prove in the next section. With that in mind, let ε > 0 and

suppose δ is such that | f (x)− f (y)| < ε/2 whenever |x − y | ≤ δ. We’ll also take for

granted that | f (x)| ≤ M holds for all x ∈ [0,1], for some M .

We have to show that f ∈C [0,1] is the limit of some sequence of polynomials, or

what is the same, that for every ε > 0, there is a polynomial p(x) with supx |p(x)−
f (x)| < ε.

For x ∈ [0,1] imagine a biased coin c taking values 0 or 1 with probability distribu-

tion P(c = 1) = x and P(c = 0) = 1− x, and flip it n times, and denote the outcomes

c1(x), . . . ,cn(x). The basic statistics of this experiment follow a binomial distribution

P(c1(x)+·· ·+cn(x) = i ) =
(

n

i

)
xi (1−x)n−i ,
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the expected number of 1’s is

E(c1(x)+·· ·+cn(x)) = nx

and the variance is (by independence between each flip)

V ar (c1(x)+·· ·+cn(x)) = nV ar (c1(x)) = nx(1−x) ≤ n.

So we don’t expect c1(x)+·· ·+ cn(x) to deviate from nx by much more than a stan-

dard deviation, certainly
p

n. This can be formalized by Chebychev’s inequality

P(|c1(x)+·· ·+cn(x)−nx| ≥ n2/3) ≤ 1

n4/3
V ar (c1(x)+·· ·+cn(x)) ≤ n−1/3.

Now split up the interval [0,1] into n+1 pieces
[ i

n+1 , i+1
n+1

]
, i = 0, . . . ,n. If x belongs

to the i ’th piece, then x is about i /n +1 and nx is about i . So we expect i 1’s to show

up for x. Because f is continuous, and because we expect nx to be pretty close to

i , and we might bet on

σ(x) = f

(
c1(x)+·· ·+cn(x)

n

)
≈ f (x).

So we use this random function as a predictor for f . What do we expect from σ in

actuality? Well

E(σ(x)) =
n∑

i=0
P(c1(x)+·· ·+cn(x) = i ) f

(
i

n

)
=

n∑
i=0

(
n

i

)
xi (1−x)n−i f (i /n)

which is a polynomial function of x!

How good is this random prediction? Well, let’s take n big enough so that n−1/3 <
min{δ,ε/4M }. Then

|E(σ(x))− f (x)| ≤ E(|σ(x)− f (x)|)
and we split the expectation on the right according to whether |c1(x)+·· ·+ cn(x)−
nx| is big or small. When it’s bigger than n2/3, we bound

|σ(x)− f (x)| ≤ 2M

trivially, but this only happens with probability at most n−1/3. In the complemen-

tary case,

|c1(x)+·· ·+cn(x)−nx| < n2/3

so ∣∣∣∣c1(x)+·· ·+cn(x)

n
−x

∣∣∣∣< n−1/3 < δ
and by continuity, we have |σ(x)− f (x)| < ε/2. So

|E(σ(x))− f (x)| ≤P(|c1(x)+·· ·+cn(x)−nx| > n2/3)2M+
+P(|c1(x)+·· ·+cn(x)−nx| ≤ n2/3)

ε

2

≤ ε

4M
·2M +1 · ε

2
= ε.
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2.5 Compactness

Definition 2.14: Sequential compactness

A set C in (X ,d) is called sequentially compact if any sequence {xn} in C has

a subsequence which converges to a limit in C .

Definition 2.15: Open cover

Let (X ,d) be a metric space (or a topological space, more broadly) and C ⊆ X .

A set U of of open subsets of X is said to be an open cover of C if C ⊆⋃
U∈U U .

Definition 2.16: Compactness

A set C in a metric space (X ,d) (or a topological space, more broadly) is called

compact if for any open cover U of C , there are finitely many sets U1, . . . ,Un ∈
U such that C ⊆U1 ∩·· ·∩Un .

Lemma 2.8

In a metric space (X ,d), compact sets are closed, as are sequentially compact

sets.

Proof. Let C be compact and {xn} a sequence converging to x. For n ∈N, let

Un = {y : d(y, x) > 1/n)}

which is an open set. If x ̸∈C then the sets Ur cover all of C and hence admit a finite

subcover. But these sets are increasing, so UN covers all of C for some N , and that

means xn can’t converge to x.

Sequentially compact sets are closed almost by definition. If {xn} is a sequence in

C with xn → x then xn has a subsequence which converges C , but the limit of this

subsequence is also x.

Lemma 2.9

Let C be a collection of compact subsets of a metric space (X ,d) with the

property that any finite intersection of sets from C is non-empty. Then⋂
C∈C C is non-empty too.

Proof. For C ∈C , let UC = X \C , which is an open set. If
⋂

C∈C C =; then
⋃

C∈C UC =
X and certainly covers any C ′ ∈ C . So for any C ′ ∈ C , there are finitely many sets
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UC1 , . . . ,UCn covering C ′ whence

C ′∩C1 ∩·· ·Cn =;,

in violation of the finite intersection property.

Lemma 2.10

If C is a compact set and F ⊆C is closed, then F is compact.

Proof. Let U be an open cover of F and let U ′ = U ∪ {F c }. Then U ′ is an open

cover of X and hence of C , and so it has a finite subcover. The sets in this subcover

distinct from F c cover F .

Lemma 2.11

Compact sets are sequentially compact.

Proof. Let {xn} be a sequence in some compact set C . Let Cn = {xk : k ≥ n}, which

is a closed, and hence compact subset of C . These sets have the finite intersection

property and hence there is some x ∈ Cn for all n, which mean for each n, there

is some xk(n) with k(n) > n and d(xk(n), x) < 1/n. Since k(n) > n, we can extract

from the sequence k(n) an infinite sequence n j →∞ and the sequence xn j → x by

construction.

One convenient aspect of compact sets is they let us “discretize" things, in the

sense that we can approximate C arbitrarily well by a finite set.

Definition 2.17: Total boundedness

A set C in a metric space (X ,d) is said to be totally bounded if for any ε > 0,

there are finitely many open ball of radius ε which cover C .

Lemma 2.12

If C is sequentially compact then it is totally bounded.

Proof. If C is not totally bounded then for some ε > 0, there is no covering of C by

finitely many balls of radius ε. Let x1 ∈C . The ball B(x1,ε) fails to cover C , so there

is some x2 in C with d(x1, x2) > ε. Inductively define x j as follows: having defined

x1, . . . , x j−1, the balls B(xi ,ε) cannot cover all of C and so fail to cover some y ∈ C .

Set x j = y . By construction, the distance between distinct points in this sequence

is at least ε, and so the sequence is not Cauchy, and hence not convergent.
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Compact sets are also useful because they guarantee that continuous functions

are really nice.

Lemma 2.13: Continuity and compactness

Suppose C is a compact set in a metric space (X1,d1), (X2,d2) is some other

metric space and f : X1 → X2 is continuous. Then f is uniformly continuous

on C and f (C ) is a compact subset of X2. If C is only sequentially compact,

then f (C ) is still sequentially compact.

Proof. For the first claim, let ε> 0. Then to each x ∈C , there is an open ball B(x,δx)

such that y ∈ B(x,δx) implies d2( f (x), f (y)) < ε/2. The sets B(x,δx/2) form an open

cover of C , and so have a finite subcover, say B(x1,δx1 /2), . . . ,B(xn ,δxn /2). Let δ=
min{δx1 , . . . ,δxn }/2 and consider x, y ∈ X1 with d1(x, y) < δ. We know x ∈ B(xi ,δxi /2)

for some i , and so

d1(xi , y) ≤ δxi /2+d1(x, y) < δxi

and hence

d2( f (x), f (y)) ≤ d2( f (x), f (xi ))+d2( f (xi ), f (y)) < ε.

For the second claim, let U2 be a covering of f (C ) by open sets. The sets f −1(U )

with U ∈U2 form an open cover of C and hence admit a finite subcover f −1(U1), . . . , f −1(Un).

The sets U1, . . . ,Un cover f (C ).

For the final claim, suppose {yn} is a sequence in f (C ). Then yn = f (xn) and {xn}

is a sequence in C with a convergent subsequence {xnk } such that xnk → x. Then

ynk → f (y) ∈ f (C ).

Corollary 2.2

Let f : X → R be a continuous function using the usual metric on R. Then f

achieves a maximum and minimum value on any compact set C ⊆ X .

Proof. We already know f (C ) is compact, which implies f (C ) is closed and totally

bounded (and certainly just bounded). Let {xn} be a sequence in C such that f (xn) →
sup f (C ). Then {xn} has a subsequence {xnk } converging to some x ∈C , and by con-

tinuity f (xnk ) → f (x), whence f (x) = sup f (C ), achieving a maximum value. Apply-

ing the same argument to − f achieves the minimum.
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Lemma 2.14: The Lebesgue Number

Let C be a sequentially compact set in a metric space (X ,d), and let U be an

open cover. Then there is a δ= δ(U ) such that for each x ∈C , the ball B(x,δ)

is contained in some U belonging to U .

Proof. Let V =⋃
U∈U U . Define the function f : X →R by

f (x) =
sup{ρ : ρ ∈ [0,1], B(x,ρ) ⊆U for some U ∈U } x ∈V

0 otherwise.

This function is continuous. Indeed, suppose x, y satisfy d(x, y) < δ. If neither x nor

y belong to V , then f (x) = f (y) = 0. Suppose next that exactly one of x, y ∈ V , say

y . Then because x ∈ B(y,2δ) we have B(y,2δ) ̸⊆U for any U ∈U , hence f (y) < 2δ,

so in this case f is continuous at x with δ = ε/2. Otherwise x ∈ V , and the same

argument applies. We are left to contend with the case that x, y ∈ V . Take δ = ε/2,

let f (x)− ε/2 < ρx < f (x), and suppose ρy = ρx − ε/2. Then f (x)− ε < ρy < f (x).

There is some U with B(x,ρx) ⊆U and if z ∈B(y,ρy ), then d(z, x) ≤ ρy +d(x, y) <
ρy +ε/2 < ρx . Thus B(y,ρy ) ⊆U and we see f (y) ≥ ρy > f (x)−ε. Similarly we see

f (x) < f (y)+ε.

From continuity and compactness we see that f achieves a minimum on C and

since f is strictly positive on C , that minimum, say 2δ, is positive too. Thus for each

x ∈C we have δ< f (x)/2 and hence B(x,δ) ⊆U for some U ∈U .

Theorem 2.7: Borel-Lebesgue

In a metric space (X ,d), compactness and sequential compactness are equiv-

alent.

Proof. We’ve already seen that compactness implies sequential compactness. Now

suppose that we have a sequentially compact set C and U is an open cover of

C . Let δ be the Lebesgue number of U , and because C is totally bounded, let

c1, . . . ,cn be centres of δ/2 balls covering C . For each i , pick some xi ∈ B(ci ,δ/2).

Then B(xi ,δ) ⊆Ui for some Ui ∈ U and for any other x ∈ C , d(x,c j ) < δ/2 whence

d(x, x j ) < δ and hence x ∈ B(x j ,δ) ⊆U j . Thus the sets U1, . . . ,Un cover C .

Having seen that sequentially compact and compact are equivalent we now relate

compactness to a more concrete condition.
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Theorem 2.8: Heine-Borel

Let (X ,d) be a metric space. Then C ⊆ X is compact if and only if C is closed,

every Cauchy sequence in C converges, and C totally bounded.

Proof. We’ve already seen any compact C has to be closed and totally bounded. If

{xn} is a Cauchy sequence in C , it has to have a convergent subsequence, and that

in turn forces the whole sequence to converge to the same limit.

Conversely, suppose C is closed and totally bounded, and Cauchy sequences con-

verge in C . Let {xn} be any sequence in C . It suffices to find a convergent subse-

quence. Inductively, we produce a nested sequence of balls B(cn ,1/n), each con-

taining infinitely many terms of the sequence {xn}. Indeed, we begin with n = 1, and

since C is totally bounded, we can cover C by finitely many radius 1 balls, and so one

such ball, say B(c1,1), contains infinitely many terms of our sequence. Let I1 = {n :

xn ∈B(c1,1)}. At stage j , we have some infinite set I j = {n : xn ∈B(c j ,1/ j )}. Cover

C by balls of radius 1/( j +1). One ball must contain infinitely terms of the sequence

with n ∈ I j , say B(c j+1,1/( j +1)), and let I j+1 = {n ∈ I j : xn ∈B(c j+1,1/( j +1))}. Next

select an increasing sequence n j with n j ∈ I j . The sequence {xn j } is Cauchy, since

if j > J , each xn j belongs to B(c J ,1/J ) and any two points from this ball are at most

2/J apart. The sequence {xn j } converges to some limit x ∈ C by completeness and

the fact that C is closed.
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3
MEASURES

3.1 Counting measures and abstract measures

The counting measure on a set X is a function

m : P (X ) → [0,∞]

which maps A ⊆ X to |A|, where m(A) =∞ is allowed too. It does not distinguish

between cardinalities of infinite sets. Thus, it is a primitive tool which allows us to

describe the size of the set A. It’s called the counting measure, because it counts

the number of elements of A.

We would like to explore other notions of measures of a set, in particular ones

which apply to subsets of Rn . Before doing so, it’s worth taking stock of some famil-

iar properties of the counting measure.

(Positivity) If A is a set, m(A) ≥ 0 and m(A) = 0 if and only if A =;.

(Additivity) If A and B are disjoint sets, then m(A∪B) = m(A)+m(B).

Our goal is to come up with a notion of measure which is a little more fine-tuned

in its capacity to handle infinite sets. It turns out our list of desired properties will

change a little.
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Definition 3.1: Abstract measure

In general, we call a function m a measure on a certain collection of sets Σ

(which is called a σ-algebra) if it has the following properties

Non-negativity: If A ∈Σ is a set, m(A) ≥ 0 and m(A) = 0 if A =;.

σ-additivity: If A1, A2, . . . are pairwise disjoint sets from Σ, then m(
⋃

i Ai ) =∑∞
i=1 m(Ai ).

Let’s examine the changes. First, we no-longer have positivity. This is because we

may try to assign a finite measure to an infinite set, and this may force us to think

of small sets as very small.

Exercise. Let X be uncountable and suppose that m is an abstract measure on some

collection Σ of sets such that X ∈ Σ and every x ∈ X satisfies {x} ∈ Σ. Then either

m({x}) = 0 for some x ∈ X or else m(X ) =∞.

Another change is that we have upgraded the additivity to handle finitely many

pairwise disjoint sets to countably many. This, it turns out, is really a necessary

change in order to get a robust notion of measure.

Finally, we have only defined the measure on a certain collection of sets Σ, which

we called a σ-algebra. These sets are the sets we’re allowed to measure, naturally

called the measurable sets.

Definition 3.2: σ-algebra

A σ-algebra on a set X is a set Σ⊆P (X ) with the following properties:

Empty set: ;∈Σ,

Closure under complement: A ∈Σ =⇒ Ac ∈Σ, and

Closure under countable union: If Ai ∈Σ for i ∈N then
⋃

i∈N Ai ∈Σ.

We record, before moving on, that abstract measures are monotone, in the sense

that the measure of larger sets is indeed larger.

Exercise. If m is an abstract measure on Σ and A,B ∈ Σ with A ⊆ B then m(A) ≤
m(B).
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3.2 In search of Lebesgue measure

If we treat counting measure as an abstract measure on R, then it will assign to

each infinite set the value ∞. This is too narrow-minded to me able to say anything

interesting.

The simplest subsets of R are the intervals, [a,b], and we already have a notion of

size for them: their length l ([a,b]) = b − a. Notice that this is translation invariant

in the sense that l ([a + t ,b + t ]) = l ([a,b]). So perhaps we might try to extend these

properties to a measure on subsets of R. That is to say, we might like that m(A+t ) =
m(A) where

A+ t = {a + t : a ∈ A}.

Unfortunately, this cannot work.

Theorem 3.1

There is no abstract measure m, defined on all subsets of R with the prop-

erties that m([a,b]) = b −a and m(A + t ) = m(A) for all sets A and translates

t ∈R.

Proof. Let V ⊆ (0,1) be a Vitali set, see 1.3. Let Q = Q∩ [−1,1]. Now each x ∈ [0,1]

can be written as

x = qx + vx

with qx ∈Q and vx ∈ V . In fact

|qx | = |x − vx | ≤ 1

so qx ∈Q. Thus [0,1] ⊆⋃
q∈Q q +V . The set Q is countable, and the translates q +V

are pairwise disjoint:

q1 + v1 = q2 + v2 =⇒ v1 − v2 = q2 −q1 ∈Q =⇒ v1 = v2 and q1 = q2

where we have used that V is a complete set of representatives. By translation in-

variance and σ-additivity

m

( ⋃
q∈Q

q +V

)
= ∑

q∈Q
m(q +V ) = ∑

q∈Q
m(V )

so either

m(V ) = m

( ⋃
q∈Q

q +V

)
= 0

or m
(⋃

q∈Q q +V
)=∞. The former cannot occur since

m

( ⋃
q∈Q

q +V

)
≥ m([0,1]) ≥ 1.
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Meanwhile

−1+0 ≤ q + v ≤ 1+1

so ⋃
q∈Q

q +V ⊆ [−1,2] =⇒ m

( ⋃
q∈Q

q +V

)
≤ m([−1,2]) = 3.

This would appear to dash our hopes of defining a nice measure which satisfies

our list of desired properties. All is not lost however – the Vitali set is pretty bizarre,

and we might just as well ignore it. This is why we define measures on σ-algebras:

we can choose to measure only well-behaved sets.

We already know that we want to be able to measure intervals, and we want their

measure to be their length. Actually, we have only stated as much for closed in-

tervals, but the length of an interval does not depend on the inclusion of either

endpoint.

Exercise. Suppose Σ contains all intervals and m is a measure on Σ. Show that if

m(I ) = l (I ) for all bounded intervals I then m(I ) =∞ when I is unbounded.

We might also hope to measure other nice sets, like open sets and closed sets. As

concerns open sets, we have the following lemma.

Lemma 3.1: Lindelöf’s Lemma

If U ⊆R is open then U is a disjoint union of countably many open intervals.

Proof. Define an equivalence relation ∼ on U by x ∼ y ⇐⇒ [min{x, y},max{x, y}] ⊆
U . The only tricky bit about showing this is an equivalence relation is transitivity. If

x ∼ y and y ∼ z then we are to show that (assuming x ≤ z, without loss of generality)

[x, z] ⊆U .

If y ≤ x then [x, z] ⊆ [y, z] ⊆U . If x ≤ y ≤ z then [x, z] = [x, y]∪ [y, z] ⊆U and if y ≥ z

then [x, z] ⊆ [x, y] ⊆U .

Now we show that the equivalence class of x, [x], is the open interval

[x] = (inf[x],sup[x]).

Indeed, let I be said interval. First neither endpoint belongs to [x]. This is obvious if

either endpoint is infinite, since [x] ⊆R. If, say l = inf[x] is finite and belongs to [x],

then l ∈U , and because U is open [l −ε, l ] ⊆U for some ε> 0, whence l −ε≡ l ≡ x,

contradicting that l is a lower bound for [x]. Next, For t ∈ I , we can find y, z ∈ [x]
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with inf[x] < y < t < z < sup[x], and y ∼ z (they belong to the same equivalence

class, namely [x]) so t ∈ [y, z] ∈U . Conversely, we plainly have [x] ⊆ [inf[x],sup[x]]

and since neither endpoint belongs to [x], we have that in fact [x] ⊆ (inf[x],sup[x]).

Now, since U is the disjoint union of equivalence classes, each of which is an open

interval, it remains to show there are only countably many. But each such open in-

terval contains a rational number, and these must be distinct as the intervals are

disjoint. Since there are only countably many such rationals, there are only count-

ably many such intervals.

Thus to measure an open set U , we might write

U =
∞⋃

n=1
In

for some (possibly empty) open intervals In and it would then follow that

m(U ) =
∞∑

n=1
l (In),

using the σ-additive property of m.

If U is not open, it may very well not be a disjoint union of open intervals. How-

ever, we could try to fit it in an ever-so-slightly larger open set and approximate its

measure by that of the open set.

Definition 3.3: Lebesgue Outer Measure on R

Let A ⊆ R. Then the Lebesgue outer measure, m∗, on R is the (possibly infi-

nite) value

m∗(A) = inf

{ ∞∑
n=1

l (In) : A ⊆
∞⋃

n=1
In , each In a closed interval

}
.

We have now come up with a definition of measure that is so general it applies to

all sets. This brings about two issues. First, we know something has to fail, because

we already said there is no notion of measure with all our desired properties that

can measure the Vitali set. Second, the definition of outer measure does not tell us

right off the bat that the measure of an interval is its length. Fortunately, this is still

the case.

Lemma 3.2

Let [a,b] be a finite interval. Then m∗([a,b]) = b −a.
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Proof. Since [a,b] ⊆ [a,b]∪[a, a]∪[a, a]∪·· · and l ([a, a]) = 0 we can take I1 = [a,b]

and In = [a, a] for n ≥ 2 to cover [a,b] by closed intervals such that

∞∑
n=1

l (In) = b −a.

Hence

m∗([a,b]) ≤ b −a.

Now we show that m∗([a,b]) ≥ b − a − ε for each ε > 0, which will conclude the

proof. To that end, let {In} be a collection of closed intervals with the property that

[a,b] ⊆⋃
n

In ,
∞∑

n=1
l (In) ≤ m∗([a,b])+ε.

This is purely a consequence of the definition of m∗. Because [a,b] is compact,

we may pass to a finite subcollection of intervals covering [a,b], and we may fur-

ther assume it’s minimal, in the sense that no interval in the subcollection can be

removed without failing to cover [a,b]. Thus we have

[a,b] ⊆ I1 ∪ . . .∪ Ir

and
r∑

n=1
l (In) ≤ m∗([a,b])+ε.

Let’s assume that the left endpoints of the In = [an ,bn] are increasing so that a1 ≤
. . . ≤ ar . If, for any n, bn < an+1, we would have

[a,b] ⊆ [a1,b1]∪·· · [an ,bn]∪ [an+1,bn+1]∪·· ·∪ [ar ,br ] ⊆ (−∞,bn]∪ [an+1,∞).

Because each interval In must intersect [a,b] (if not, we could remove it and get a

smaller covering), there is an element from [a,b] in each of the above intervals on

the right. But the right hand side is disconnected, and [a,b] is connected. This tells

us that

an+1 ≤ bn

for n ≤ r −1. Consequently

r∑
n=1

l ([an ,bn]) =
r∑

n=1
bn −an ≥ br −ar +

r−1∑
n=1

an+1 −an = br −a1.

But a1 is the left-most point in all of the In , so must be smaller than a. Meanwhile

br ≥ ar ≥ br−1 ≥ ar−1 ≥ br−2 ≥ . . .

so that br is the right-most point. Hence b ≤ br .
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Theorem 3.2

If A is countable then m∗(A) = 0. Consequently, and interval of positive

length is uncountable.

Proof. Enumerate A, and around an , put an interval In = [an − ε/2n , an + ε/2n].

These intervals cover A and hence

m∗(A) ≤
∞∑

n=1
l (In) = 2ε.

3.3 Extending to Rn

The Lindelöf lemma is no longer true in Rn , so there is no longer an obvious way

to define the outer measure. There are a few ways to extend the notions of interval

and length. The most convenient are using rectangles and volume.

Definition 3.4: Rectangles and Cubes

A closed rectangle R in Rn is a cartesian product of closed (possibly un-

bounded) intervals

R = [a1,b1]×·· ·× [an ,bn].

And open rectangle is the same but with open intervals. The volume of R is

v(R) =
n∏

j=1
(b j −a j ).

When b j −a j = bi −ai for all i , j , we call R a cube.

A convenient collection of cubes are the dyadic ones.

Definition 3.5: Dyadic points, intervals and cubes

A dyadic point in R is a rational of the form j /2k with j ,k ∈ Z. We call k the

height, or scale, of the point. A (closed) dyadic interval is one of the form

[ j /2k , ( j +1)/2k ]. A (closed) dyadic cube is a product of dyadic intervals of a

fixed length.
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Lemma 3.3

There are countably many dyadic cubes. If Q1 and Q2 are dyadic cubes then

either one contains the other, or else their interiors are disjoint.

Proof. A dyadic cube has the form

Q = [( j1)/2k , ( j1 +1)/2k ]×·· ·× [( jn)/2k , ( jn +1)/2k ].

Since j1, . . . , jn ,k ∈Z, there are as many dyadic cubes as there are elements ( j1, . . . , jn ,k) ∈
Zn+1, which is countable. We prove the second claim for intervals only, and leave

the rest as an exercise.

Let Q1 = [ j1/2k1 , ( j1 +1)/2k1 ] and Q2 = [ j2/2k2 , ( j2 +1)/2k2 ]. Assume, without loss

of generality that k1 − l = k2 for some l ≥ 0. Then Q2 can be broken into dyadic

subintervals

Q2 = [2l j2/2k1 ,2l ( j2 +1)/2k1 ] =
2l−1⋃
i=0

[(2l j2 + i )/2k1 , (2l j2 + i +1)/2k1 ],

and these intervals are in line, with two adjacent intervals intersecting at only the

endpoints. If Q1 is one of these, then Q1 ⊆Q2. Otherwise, Q1 is some other dyadic

interval at scale k and can at most intersect one of the above intervals at an end-

point.

Two cubes are said to be almost disjoint if their interiors are disjoint.

Lemma 3.4

If U ⊆ Rn is open then it is the almost-disjoint union of at most countably

many dyadic cubes.

Proof. For x ∈U there is a ball B(x,εx) around x which is contained in U . For any

k, there is a dyadic cube

Q j1,..., jn ,k =
n∏

i=1
[ ji /2k , ( ji +1)/2k ]

which contains x. The distance from x to any point in this cube is at most
p

n2−k ,

and hence such a cube is contained in B(x,ε) for k sufficiently large. We call a

dyadic cube good if Q ⊆ U and no larger dyadic cube is a subset Q. That is, if Q

is a cube at scale k, the cube at scale k −1 which contains Q is not a subset of U .

For x ∈U , let k(x) denote the smallest k such that x ∈ Qx ⊆U for some Qx at scale

k(x). Clearly Qx is a good cube, and by the preceding lemma, good cubes are almost

disjoint. Hence the good cubes satisfy the conditions of the lemma.
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Definition 3.6: Lebesgue outer measure on Rn

Let A ⊆ Rn . Then the Lebesgue outer measure, m∗, on Rn is the (possibly

infinite) value

m∗(A) = inf

{ ∞∑
j=1

V (R j ) : A ⊆
∞⋃

j=1
Q j , each Q j a closed cube

}
.

We have not insisted that the cubes are dyadic here, and it doesn’t make too much

difference. We’ll see a few techniques which allow us to replace coverings by closed

cubes by coverings with other objects. For instance, closed, bounded rectangles

will do.

Lemma 3.5

For any set A, and let

m′
∗(A) = inf

{ ∞∑
j=1

V (R j ) : A ⊆
∞⋃

j=1
R j , each R j a closed, bounded rectangle

}
.

Then

m∗(A) = m′
∗(A).

Proof. Let A ⊆⋃
Q j be a covering of A by closed cubes. Since cubes are themselves

rectangles,

m′
∗(A) ≤∑

j
V (Q j ),

and hence

m′
∗(A) ≤ m∗(A).

Conversely, if R = I1×·· ·× In is a rectangle, then we can cover each Ii with a union

of almost disjoint intervals of lengthδmin j {l (I j )}, say Ii ,k where
∑

k l (Ii ,k ) ≤ l (Ii )(1+
δ). Hence the cubes I1,k1 ×·· ·× In,kn cover R j , and

∑
k1,...,kn

V (I1,k1 ×·· ·× In,kn ) =
n∏

i=1

(∑
k

l (Ii ,k )

)
≤

n∏
i=1

(1+δ)l (Ii ) = (1+δ)nV (R).

Now cover A with rectangles R j , with∑
j

V (R j ) ≤ m′
∗(A)+ε

Do this for each j , taking δn so small that (1+δ j )nV (R j ) ≤ V (R j )+ε/2 j . Then the

total volume of all the cubes involved is at most∑
j

V (R j )+ε/2 j ≤ m′
∗(A)+2ε,
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whence m∗(A) ≤ m′∗(A)+2ε, and we get the claimed result by letting ε→∞.

We next extend Lemma 3.2 to Rn .

Lemma 3.6

Let Q be a closed and bounded cube in Rn . Then

m∗(Q) =V (Q).

Proof. It’s immediate from the definition of outer measure that m∗(Q) ≤V (Q), since

Q is itself a covering of Q. Now, we show V (Q) ≤ m∗(Q)+ε for ε> 0.

Let
⋃

j Q j cover Q and be such that
∑

j V (Q j ) < m∗(Q)+ ε/2. We can expand Q j

to an open cube Q ′
j containing Q j with volume at most V (Q ′

j )+ε/2 j+1. The cubes

Q ′
j cover Q too, and their total volume is at most m∗(Q)+ ε. Because these cubes

are open and Q is compact, we need only finitely many to cover Q, say Q ′
1, . . . ,Q ′

N .

Finally let R j =Q ′
j ∩Q, which is a rectangle. Then

⋃
j R j =Q and∑

j
V (R j ) ≤ m ∗ (Q)+ε.

Now let a = (a1, . . . , an) ∈ Q = I1 × ·· · × In . Then a ∈ R j = I j
1 × ·· · × I j

n for some j ,

and from this ai ∈ I j
i . This tells us that the intervals I j

i with j = 1, . . . , N cover the

interval I j . Finally, let Xi denote the endpoints of the intervals I j
i , and if Xi = {ti ,1 <

. . . < ti ,Mi } then Ii ⊆⋃Mi−1
k=1 [ti ,k , ti ,k+1]. From the one dimensional case, Lemma 3.2,

we have
Mi∑

k=1
ti ,k+1 − ti ,k ≥ l (Ii ).

The rectangles Sk1,...,kn = ∏n
i=1[ti ,ki , ti ,ki+1] cover Q, are almost disjoint, and each is

contained in some R j . Thus∑
j

V (R j ) ≥ ∑
k1,...,kn

V (Sk1,...,kn )

= ∑
k1,...,kn

(t1,k1+1 − t1,k1 ) · · · (tn,kn+1 − tn,kn )

=
n∏

i=1
(

Mi∑
k=1

ti ,k+1 − ti ,k )

≥
n∏

i=1
l (I j ) =V (Q).
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3.4 Properties of outer measure

Lemma 3.7: Monotonicity and subadditivity

The outer measure is increasing: if A ⊆ B then m∗(A) ≤ m∗(B). If A1, A2, . . . is

any collection of sets then m∗(
⋃

n An) ≤∑
n m∗(An).

Proof. Let {Qn} be a countable collection of closed cubes covering B . Then it covers

A as well, so m∗(A) ≤∑
n V (Qn). It follows that m∗(A) ≤ m∗(B).

For the second claim, cover An by a family {Qn, j } j∈N of cubes subject to the con-

straint

m∗(An) ≤∑
j

V (Qn, j ) ≤ m∗(An)+ε/2n .

The family of all such cubes, {Qn, j }n, j∈N is still countable, covers the union of the

An , and we have

∑
n, j

V (Qn, j ) ≤∑
n

(
m∗(An)+ε2−n)≤ (∑

n
m∗(An)

)
+ε.

Corollary 3.1

We have

m∗(A) = inf{m∗(U ) : A ⊆U , U open}.

Proof. By the preceding lemma, for A ⊆U , we have m∗(A) ≤ m∗(U ) and hence

m∗(A) ≤ inf{m∗(U ) : A ⊆U , U open}.

Conversely, given a covering of A by closed cubes {Qn}, we can replace each Qn with

a larger open cube Q ′
n of volume V (Q ′

n) =V (Qn)+ε/2n by enlarging the sides of Qn

slightly. The open cubes Q ′
n still cover A and their union. Furthermore, since Q ′

n is

covered by Q ′
n , we have m∗(Q ′

n) ≤V (Q ′
n). Thus, by subadditivity, if U =⋃

n Q ′
n then

m∗(U ) ≤∑
n

m∗(Q ′
n) ≤∑

n
V (Q ′

n) ≤∑
n

(
V (Qn)+ε2−n)≤ (∑

n
V (Qn)

)
+ε.

If we choose the Qn subject to
∑

n V (Qn) ≤ m∗(A)+ε, we have

m∗(U ) ≤ m∗(A)+2ε.

Hence for any ε> 0

inf{m∗(U ) : A ⊆U , U open} ≤ m∗(A)+2ε,
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which implies

inf{m∗(U ) : A ⊆U , U open} ≤ m∗(A).

We would like to upgrade countable subadditivity from Lemma 3.4 to countable

additivity when the sets are disjoint. This is a little bit tricky. For now, we’ll settle for

a slightly weaker result.

Lemma 3.8

Suppose

d(A,B) = inf{∥a −b∥l 2 : a ∈ A,b ∈ B} > 0.

Then m∗(A∪B) = m∗(A)+m∗(B).

Proof. By subadditivity, we have

m∗(A∪B) ≤ m∗(A)+m∗(B).

Let δ = inf{∥a −b∥l 2 : a ∈ A,b ∈ B} and let {Qn} be a collection of closed cubes cov-

ering A ∪B . Let ln denote the sidelength of Qn . By iteratively halving the sides

of Qn , we can replace Qn with an almost disjoint union of cubes Qn, j with side-

lengths ln/2k for any k ≥ 0, and total volume V (Qn). The reason for doing so is that

if x, y ∈Qn, j then (if we are working in Rd )

∥x − y∥l 2 =
(

d∑
k=1

(xi − yi )2

)1/2

≤
(
dln2−k

)1/2

and this is smaller that δ for k sufficiently large. Thus each Qn, j intersects at most

one of A and B . It follows that the set of all cubes {Qn, j } can be partitioned into

two sets, Q1 and Q2, covering A and B respectively, and the total volume is still∑
n V (Qn), so

m∗(A)+m∗(B) ≤ ∑
Q∈Q1

V (Q)+ ∑
Q∈Q2

V (Q) =∑
n

V (Qn).

If the {Qn} are chosen to have total volume at most m∗(A)+ε, we have thus shown

m∗(A)+m∗(B) ≤ m∗(A∪B)+ε.

The result follows upon letting ε→ 0.

Lemma 3.9

Let {Q j } be a countable collection of almost-disjoint cubes of finite volume.

Then

m∗(
⋃

Q j ) =∑
j

V (Q j ).
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Proof. That

m∗(
⋃

Q j ) ≤∑
j

V (Q j )

follows from subadditivity and Lemma 3.3. Conversely, suppose Q = [a1,b1]×·· ·×
[an ,bn]. Then Q ′ = [a1+δ,b1−δ]×·· ·×[an+δ,bn−δ] is a cube with volume tending

to V (Q) as δ→ 0. We can choose δ small enough so as to have

V (Q ′) >V (Q)−ε.

Apply this procedure for each j to get a cube Q ′
j ⊆Q j with V (Q ′

j ) > V (Q j )−ε/2 j .

Then
N∑

j=1
V (Q ′

j ) >
N∑

j=1
V (Q j )−ε/2 j .

On the other hand the cubes Q ′
1, . . . ,Q ′

N all have positive distance between them

because the Q j ’s are almost disjoint. Applying Lemma 3.4 iteratively,

N∑
j=1

V (Q ′
j ) =

N∑
j=1

m∗(Q ′
j ) = m∗(

N⋃
j=1

Q ′
j ) ≤ m∗(

⋃
j

Q j ).

Taking N →∞, we get ∑
j

V (Q j )−ε≤ m∗(
⋃

j
Q j ).

3.5 Measurability

We now turn our attention to finding suitably nice sets, such that the restriction of

m∗ to these sets is countably additive. The existence of the Vitali set necessitates

this endeavour.

Definition 3.7: Lebesgue’s Measurability Criterion

A set E ⊆ Rn is called Lebesgue measurable if for every ε> 0 there is an open

set U such that E ⊆U and m∗(U \ E) < ε.

Note that by Corollary 3.4, we can always find an open set U which contains E and

satisfies m∗(U ) ≤ m∗(E)+ε. Of course we have U = E ⊔ (U \ E), but we don’t know

that the measure is additive for disjoint unions. In this way, Lebesgue’s criterion

forces the issue. Another way to force the issue is called the Carathéodory Criterion.
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Definition 3.8: Carathéodory’s Measurability Criterion

A set E ⊆Rn is called Carathéodory measurable if for every set A ⊆Rn ,

m∗(A) = m∗(A∩E)+m∗(A∩E c ).

This notion of measurability also somehow forces disjoint sets to have their mea-

sures add. However, it’s the measure of the arbitrary set A which is being broken

down. The measurable set E is the set doing the slicing. In this sense, we are defin-

ing E to be measurable if it has a nice enough boundary so as to cleanly cut A up.

The benefit of this criterion is that it makes no reference to topology, and is more al-

gebraic. It works in more abstract measure theory settings. Fortunately, Lebesgue’s

criterion is the same.

Theorem 3.3

The Lebesgue measurable sets and the Carathéodory measurable sets are the

same.

This theorem will take some working up to. We’ll start by exploring some easy

consequences of each definition. We begin with an obvious one.

Lemma 3.10

Open sets are Lebesgue measurable.

Building up from this, we have:

Lemma 3.11

Countable unions of Lebesgue measurable sets are measurable.

Proof. Let E1,E2, . . . , be Lebesgue measurable and let U j be the promised open sets

with E j ⊆ U j and m∗(U j \ E j ) ≤ ε/2 j . Let U = ⋃
U j . Then U contains

⋃
E j and if

x ∈U \
⋃

E j then x ∈U j but x ̸∈ E j , so x ∈⋃
(U j \ E j ). Hence, by subadditivity

m∗(U \
⋃

E j ) ≤∑
j
ε/2 j = ε.

Lemma 3.12

If m∗(E) = 0 then E is measurable.
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Proof. We know that for any ε > 0 there is an open set U ⊃ E with m∗(U ) < ε. But

m∗(U \ E) ≤ m∗(U ).

Lemma 3.13

Let X be a metric space and let C1 and C2 be two compact, disjoint subsets of

X . Then

inf{dX (x1, x2) : x1 ∈C1, x2 ∈C2} > 0.

Proof. The set X ×X with

d((x1, x2), (y1, y2)) = dX (x1, y1)+dX (x2, y2)

is a metric space, as the reader can, and should, verify.

Inside this space, the set C1 ×C2 is compact (we can find a convergent subse-

quence by asking the coordinates to converge one at a time), and the function

f : X×X →R given by f ((x, y)) = dX (x, y) is continuous. Indeed, for a given (x1, x2) ∈
X ×X , if (y1, y2) ∈ X ×X then

dX (x1, x2) ≤ dX (x1, y1)+dX (y1, y2)+dX (y2, x2),

and similarly

dX (y1, y2) ≤ dX (x1, y1)+dX (x1, x2)+dX (y2, x2),

so

|dX (x1, x2)−dX (y1, y2)| ≤ dX (x1, y1)+dX (x2, y2) = d((x1, x2), (y1, y2)).

From this, |dX (x1, x2)−dX (y1, y2)| < ε provided d((x1, x2), (y1, y2)) < ε.

Thus the function f achieves a minimum on C1 ×C2, say

dX (x0, y0) = inf{dX (x1, x2) : x1 ∈C1, x2 ∈C2}.

Since x0 ∈C1, y0 ∈C2 and C1 ∩C2 =;, we see dX (x0, y0) > 0.

Lemma 3.14

Closed sets are measurable.

Proof. We first show compact sets are measurable. The result will follow since if F

is closed in Rn then for N ∈N, FN = F ∩ [−N , N ]n is compact and F =⋃
N FN is then

measurable by Lemma 3.5.

If C is a compact set, necessarily bounded, we may assume that C ⊆ (−N , N )n

and let U be an open set containing C with m∗(U ) ≤ m∗(C )+ε. If need be, we can

replace U with U ∩(−N , N )n , which still covers C , is open, and has possibly smaller
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measure. Thus we are free to assume U ⊆ (−N , N )n as well. Let U ′ =U \C =U ∩C c ,

which is open as well, since C is closed. The set U ′ is thus an almost disjoint union

of cubes with finite volume closed : U ′ =⋃
j Q j , and m∗(U ′) =∑

j V (Q j ) by Lemma

3.4. Thus

m∗(U ′) ≥ ∑
j≤J

V (Q j ).

However, the set C J = Q1 ∪ . . .∪Q J is compact (each cube is compact) and disjoint

from C , whence there positive distance between C and C J so that by Lemma 3.4,

m∗(U ) ≥ m∗(C∪C J ) = m∗(C )+m∗(C J ) ≥ m∗(U )−ε+m∗(C J ) = m∗(U )−ε+∑
j≤J

V (Q j ),

which rearranges to ∑
j≤J

V (Q j ) ≤ ε.

Letting J →∞,

m∗(U ′) ≤∑
j

V (Q j ) ≤ ε,

showing that C is measurable.

Lemma 3.15

Let E be a Lebesgue measurable subset of Rn . Then E c is Lebesgue measur-

able.

Proof. Let UN ⊃ E be such that m∗(UN \E) ≤ 1/N . Then U c
N is a closed subset of E c .

Because the U c
N are closed, they are measurable, and so S =⋃

N∈NU c
N is measurable

too, and still a subset of E c . Now

E c \ S = E c ∩Sc = E c ∩⋂
N

UN ⊆UM \ E

for any fixed M . Thus m∗(E c \S) ≤ 1/M for each M and hence m∗(E c \S) = 0 making

E c \ S measurable. Thus E c = S ∪ (E c \ S) is measurable.

Combining Lemma 3.5, Lemma 3.5, and Lemma 3.5, we have proved the follow-

ing.

Theorem 3.4

The Lebesgue measurable sets form a Σ-algebra.

Next we will show that on the Σ-algebra of measurable sets, m∗ is countably ad-

ditive.
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Lemma 3.16

For any integers m1, . . . ,mn ∈Z, the cubes

[m1,m1 +1)×·· ·× [mn ,mn +1)

partition Rn and are measurable.

Proof. That the cubes partition Rn is left as an exercise. Each cube can be written

as

[m1,m1 +1)×·· ·× [mn ,mn +1) = ⋃
k∈N

[m1,m1 +1−1/k]×·· ·× [mn ,mn +1−1/k]

which are unions of closed, and hence measurable, sets.

Lemma 3.17

Let E be Lebesgue measurable with finite outer measure. Then, for ε > 0,

there is a compact set C ⊆ E with m∗(E \C ) < ε.

Proof. Let U be an open set containing E c with m∗(U ∩E) = m∗(U \E c ) < ε/4. Then

F = U c is a closed subset of E with m∗(E \ F ) < ε/4. Next let U ′ be an open set

containing E with m∗(U ′) < m∗(E)+ ε/4. We can write U ′ as an almost disjoint

union of closed and bounded cubes, U ′ =⋃
j Q j and we know, from Lemma 3.4 that

m∗(U ′) =∑
j

V (Q j ).

Write U ′
1 =

⋃
j≤J Q j and U ′

2 =
⋃

j>J Q j so U ′ =U ′
1 ∪U ′

2, and

m∗(U ′) =∑
j

V (Q j ) = ∑
j≤J

V (Q j )+ ∑
j>J

V (Q j ) = m∗(U ′
1)+m∗(U ′

2).

Suppose that J is so large that
∑

j≤J V (Q j ) > m∗(E)−ε/4, which means

m∗(U ′
2) = ∑

j>J
V (Q j ) < m∗(U ′)−m∗(U ′

1) < (m∗(E)+ε/4)− (m∗(E)−ε/4) = ε/2.

Now let

C = ⋃
j≤J

Q j ∩F = F ∩U ′
1.

The sets Q j ∩F are compact since the sets Q j are, and F is closed, and since C is a

finite union, we know C is compact too. Since F is a subset of E , so is C . Finally,

E \C ⊆U ′ \C =U ′∩ (U ′
1 ∩F )c =U ′∩ (U ′c

1 ∪F c ) = (U ′∩U ′c
1 )∪ (U ′ \ F ).

Now,

m∗(U ′∩U ′c
1 ) ≤ m∗(U ′

2) < ε/2
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while

m∗(U ′ \ F ) ≤ m∗((U ′ \ E)∪ (E \ F )) ≤ ε/2.

Theorem 3.5

Let E1,E2, . . . be Lebesgue measurable sets which are pairwise disjoint. Then

m∗

(⋃
j

E j

)
=∑

j
m∗(E j ).

Proof. First, we may assume each E j is bounded. Indeed, otherwise we can write

(for m1, . . . ,mn ∈Z)

E j ,(m1,...,mn ) = E j ∩ [m1,m1 +1)×·· ·× [mn ,mn +1),

and partition

E j =
⋃

m1,...,mn

E j ,(m1,...,mn )

into bounded, measurable sets.

Now, since each E j is assumed to be bounded, we can find compact sets C j ⊆ E j

with m∗(C j ) > m∗(E j )−ε> 2 j . The sets C j are disjoint and compact, so by mono-

tonicity, Lemma 3.5 and Lemma 3.4, we have

m∗

(⋃
j

E j

)
≥ m∗

(⋃
j≤J

C j

)
= ∑

j≤J
m∗(C j ).

Letting J →∞, we get

m∗

(⋃
j

E j

)
≥ m∗

(⋃
j≤J

C j

)
=∑

j
m∗(C j ) ≥∑

j

(
m∗(E j )−ε/2 j

)
=∑

j
m∗(E j )−ε.

From this

m∗

(⋃
j

E j

)
≥∑

j
m∗(E j ).

The reverse inequality follows from subadditivity.

Corollary 3.2

The function m∗ restricted to the Lebesgue measurable sets is a measure in

the sense of Definition 3.1.

When we restrict m∗ to the Lebesgue measurable sets we call it the Lebesgue mea-

sure, and denote it by m rather than m∗.
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One particularly nice property of m is that it obeys are certain type of continuity.

Theorem 3.6

Let E1,E2, . . . be a sequence of measurable sets.

1. If the sequence is increasing, E1 ⊆ E2 ⊆ . . . then m
(⋃

j E j
) =

lim j→∞ m(E j ).

2. If the sequence is decreasing, E1 ⊇ E2 ⊇ . . ., and if m(E1) < ∞ then

m
(⋂

j E j
)= lim j→∞ m(E j ).

Proof. For (1), we let

E ′
j = E j \ E j−1.

Then the sets E ′
j are subsets of E j but now are disjoint since if k > j , we have E ′

k ∩
E j =;. Moreover, E ′

j is measurable, since it is obtained from measurable sets using

the operations permitted by a σ-algebra, and

J⋃
j=1

E ′
j =

J⋃
j=1

E j ,

for all J , including J =∞. So

m

( ∞⋃
j=1

E j

)
= m

( ∞⋃
j=1

E ′
j

)
=

∞∑
j=1

m
(
E ′

j

)
= lim

J→∞
∑
j≤J

m
(
E ′

j

)
= lim

J→∞
m

(⋃
j≤J

E ′
j

)
= lim

J→∞
m

(
E J

)
.

For (2), if j ≥ 2 we set E ′
j = E1 \ E j . Since E1 has finite measure, so do E j and E ′

j

and

m(E1) = m(E j )+m(E ′
j ) =⇒ m(E j ) = m(E1)−m(E ′

j ).

The sets E ′
j are increasing since the E j are decreasing. By (1),

lim
j→∞

m(E1)−m(E ′
j ) = m(E1)− lim

j→∞
m(E ′

j ) = m(E1)−m

( ∞⋃
j=2

E ′
j

)
.

But
∞⋃

j=2
E ′

j =
∞⋃

j=2
E1 ∩E c

j = E1 ∩
( ∞⋃

j=2
E c

j

)
= E1 ∩

( ∞⋂
j=2

E j

)c

so

m(E1) = m

(
E1 ∩

( ∞⋂
j=2

E j

)c)
+m

( ∞⋂
j=1

E j

)
= m

( ∞⋃
j=2

E ′
j

)
+m

( ∞⋂
j=1

E j

)
and the theorem follows.
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We conclude this section with a proof of Theorem 3.5. We’ll need one final lemma

to do it.

Lemma 3.18

If E1 and E2 are both Carathéodory measurable, then so is E1 ∪E2. Conse-

quently, E1 ∩E2 is Carathéodory measurable as well.

Proof. Let A be arbitrary. Then, applyling Carathéodory’s criterion twice,

m∗(A) = m∗(A∩E1)+m∗(A∩E c
1)

= m∗(A∩E1 ∩E2)+m∗(A∩E1 ∩E c
2)+m∗(A∩E c

1 ∩E2)+m∗(A∩E c
1 ∩E c

2).

Our aim is to show that

m∗(A) = m∗(A∩(E1∪E2))+m∗(A∩(E1∪E2)c ) = m∗(A∩(E1∪E2))+m∗(A∩E c
1∩E c

2),

so we just need to show

m∗(A∩ (E1 ∪E2)) = m∗(A∩E1 ∩E2)+m∗(A∩E1 ∩E c
2)+m∗(A∩E c

1 ∩E2).

But, applying Carathéodory’s criterion two more times,

m∗(A∩ (E1 ∪E2)) = m∗(A∩ (E1 ∪E2)∩E1)+m∗(A∩ (E1 ∪E2)∩E c
1)

= m∗(A∩E1)+m∗(A∩E2 ∩E c
1)

= m∗(A∩E1 ∩E2)+m∗(A∩E1 ∩E c
2)+m∗(A∩E2 ∩E c

1).

Since Carathéodory’s criterion is symmetric in E and E c , we know E c
1 , E c

2 , E c
1∪E c

2 =
(E1 ∩E2)c and hence E1 ∩E2 are all Carathéodory measurable as well.

Proof of Theorem 3.5. We first show that Lebesgue measurability implies Carathéodory

measurability. To do so it suffices to show that for ε> 0 and any set A ⊆Rn , we have

m∗(A)+ε≥ m∗(A∩E)+m∗(A∩E c ). This will prove that m∗(A) ≥ m∗(A∩E)+m∗(A∩
E c ), while subadditivity shows that m∗(A) ≤ m∗(A∩E)+m∗(A∩E c ).

So let E be Lebesgue measurable and let A be an arbitrary subset of Rn . Let U be

an open set containing A which has measure at most m∗(A)+ ε. Then U ∩E and

U ∩E c are both Lebesgue measurable and disjoint, so m∗(U ∩E)+m∗(U ∩E c ) =
m∗(U ) ≤ m∗(A)+ε.

Next suppose that E is Carathéodory measurable. Since [−N , N ]d is Lebesgue

measurable, it is Carathéodory measurable too, and hence EN = E ∩ [−N , N ]d is

Carathéodory measurable. But EN has finite measure, if U is an open set containing

EN with m∗(U ) ≤ m∗(EN )+ε, we have

ε+m∗(EN ) ≥ m∗(U ) = m∗(EN )+m∗(U \ EN ) =⇒ m∗(U \ EN ) ≤ ε,

since we can subtract m∗(EN ) from both sides (using that it is finite). So EN is

Lebesgue measurable, and hence so is E =⋃
N EN .

49



3.6 Measurable Functions

Given a set X , we can think of aσ-algebra on X as defining some “measurable" sets,

even if we don’t have a measure defined on them yet. So if X and Y are sets with

respective σ-algebras ΣX and ΣY , we think of f : X → Y as being well-behaved with

respect to these σ-algebras if f −1(E) ∈ ΣX whenever E ∈ ΣY , which is reminiscent

of the definition of continuity.

Definition 3.9: Measurable Function

Let X and Y be sets with respectiveσ-algebrasΣX andΣY . A function f : X →
Y is called (ΣX →ΣY )-measurable (or just measurable, if the context is clear)

if f −1(E) ∈ΣX whenever E ∈ΣY .

Lemma 3.19

Let X and Y be sets with respective σ-algebras ΣX and ΣY . Suppose Y has a

secondσ-algebraΣ′
Y which satisfiesΣ′

Y ⊆ΣY . Then if f : X → Y is (ΣX →ΣY )-

measurable, it is also (ΣX →Σ′
Y )-measurable.

In our context, we have the Lebesgue measurable sets defined on Rd and we want

to understand measurable functions f :Rn →R. However, if we endowRwith theσ-

algebra of Lebesgue measurable sets, we will not recover enough measurable func-

tions, and will even miss out on some continuous functions. There is a smaller

σ-algebra on R, called the Borel algebra, which is generated by the open sets.

Lemma 3.20: σ-algebra generated by X

Let X be a non-empty set and suppose X ⊆ P (X ) is some collection of sub-

sets. There is a unique minimal σ-algebra on X containing all the sets from

X called the σ-algebra generated by X .

Proof. Given any collection C of σ-algebras,
⋂
Σ∈C Σ is also a σ-algebra. There is at

least one σ-algebra containing X , namely all of P (X ). Then let

C = {Σ :Σ is a σ-algebra on X containing X },

and set

ΣX = ⋂
Σ∈C

Σ,

which is the minimal σ-algebra containing X .
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We want to consider functions which are Lebesgue measurable→Borel-measurable,

and it so happens that it is enough to check this on intervals, which generate open

sets and hence Borel sets. We will also want our functions to be allowed to take on

the value ∞.

Definition 3.10: Extended real-valued measurable function

Let f :Rn →R∪ {∞} be a function. We say f is extended real-valued measur-

able if for any a ∈R∪ {∞}, the set f −1((−∞, a]) is Lebesgue-measurable.

Lemma 3.21

An indicator function 1E is measurable if and only if the set E ∈Rd is measur-

able.

Proof. Indeed 1−1
E ((−∞, a]) is one of ;, E c , or Rd , according to whether a < 0,

0 ≤ a < 1 or a ≥ 1. Thus 1E is measurable if and only if E c is measurable which

is equivalent to E being measurable.

Lemma 3.22

The following are equivalent:

1. f −1((−∞, a]) is measurable for all a ∈R,

2. f −1((−∞, a)) is measurable for all a ∈R,

3. f −1((a,b)) is measurable for all a,b ∈R,

4. f −1([a,b)) is measurable for all a,b ∈R.

Proof. Assume (1), then

f −1((−∞, a)) = ⋃
n∈N

f −1((−∞, a −1/n])

which is a union of measurable sets, so we conclude (2). If (2) holds then

f −1((a,b)) = ⋃
n∈N

f −1((−∞,b)) \ f −1((−∞, a +1/n)),

which proves (3). If (3) holds,

f −1([a,b)) = ⋂
n∈N

f −1((a −1/n,b)),

proving (4). Given (4),

f −1((−∞, a)) = ⋃
n∈N

f −1([−n, a)),
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and we conclude (1).

Lemma 3.23

If f is measurable and c ∈R then c f is measurable.

Proof. If c = 0 then f = 0 = 1; which is measurable. If c > 0, for any a,

(c f )−1((−∞, a]) = {x : c f (x) ≤ a} = {x : f (x) ≤ a/c} = f −1((−∞, a/c]).

If c < 0

(c f )−1((−∞, a]) = {x : c f (x) ≤ a} = {x : f (x) ≥ a/c} = f −1((−∞, a/c))c .

Lemma 3.24

If f and g are measurable then so is f + g .

Proof. Observe that

f (x)+ g (x) < a ⇐⇒ f (x) < q and g (x) < a −q for some q ∈Q.

Indeed, given such a q ,

f (x)+ g (x) < q + (a −q) = a

and conversely, if f (x)+ g (x) < a let q ∈ ( f (x), a − g (x)) and then

f (x) < q, g (x) < a −q.

It follows that

( f + g )−1((−∞, a)) = {x : f (x)+ g (x) < a}

= ⋃
q∈Q

{x : f (x) < q, g (x) < a −q}

= ⋃
q∈Q

{x : f (x) < q}∩ {x : g (x) < a −q}

= ⋃
q∈Q

f −1((−∞, q))∩ g−1((−∞, a −q))

which is a countable union of measurable sets and hence measurable.

Lemma 3.25

If { fn} is a sequence of measurable functions, then so are the measurable (and

possible infinite-valued) functions defined by

inf(x) = inf
n

fn(x), sup(x) = sup
n

fn(x), liminf(x) = liminf
n

fn(x), limsup(x) = limsup
n

fn(x).
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Proof. We have

−1
sup((−∞, a]) = {x : sup

n
fn(x) ≤ a} =⋃

n
{x : fn(x) ≤ a}

which is measurable. Since inf(x) = supn − fn(x), we conclude that sup(x) is also

measurable. Then

liminf(x) = sup
n

inf
k≥n

fk (x)

is measurable by the first two parts. Similarly,

limsup(x) = inf
n

sup
k≥n

fk (x)

is measurable.

Theorem 3.7

If f : Rd → R is measurable and g : R→ R is continuous then g ◦ f is measur-

able.

Proof. We have

g ( f (x)) < a ⇐⇒ f (x) ∈ g−1((−∞, a)).

But g−1((−∞, a)) is a countable union of intervals (an ,bn) so

g ◦ f −1((−∞, a)) =⋃
n

f −1((an ,bn))

which is a measurable set.

Theorem 3.8

If f is a non-negative measurable function, then there is an increasing se-

quence φn of non-negative, measurable simple functions φn converging to

f .

Proof. Define

φn(x) =
n if f (x) ≥ n,

m/n if m/2n ≤ f (x) < (m +1)/2n for some 0 ≤ m ≤ n2n −1.

The functionφn rounds f down to n if f is too big, or else it rounds f down to the

nearest fraction with denominator 2n . In this way

φn = n1 f −1([n,∞)) +
n2n−1∑
m=0

m

n
1 f −1([m/2n ,(m+1)/2n )

is a measurable, simple function.
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The function φn is bounded above by f pointwise, by its very definition. If n′ > n

then, if f (x) ≥ n′, we have

φn′(x) = n′ ≥ n ≥φn(x)

if n ≤ f (x) < n′

φn′(x) = m/2n′

where n ≤ f (x) ≤ (m +1)/2n′
and so m/2n′ ≥ n2n′

/2n′ = n too. Thus here φn′(x) ≥
φn(x).

Finally if f (x) ≤ n then since all fractions with denominator 2n are also fractions

2n′−nm/2n′
with denominator n′, we would not round f (x) down to φn(x) further

than φn′(x). Thus φn is an increasing sequence.

Finally |φn(x)− f (x)| ≤ 1/2n for all n sufficiently large, and hence φn(x) → f (x).

Corollary 3.3

If f : E → R is a non-negative measurable function on some measurable set

E ⊆ Rd , we can find non-negative simple functions φn increasing pointwise

to f .

Proof. We can extend f to all of Rd by setting f (x) = 0 for x ̸∈ E . This is still mea-

surable. Then we apply the preceding theorem to f to get φn increasing to f . The

functions φn , restricted to E , are still simple and still increase to f

3.7 Littlewood’s Principles

Littlewood’s three principles are guiding heuristics that make some of the more

technical parts of measure theory a bit more palatable. The first states that all mea-

surable sets with finite measure are basically unions of cubes.

Theorem 3.9

Let E be a measurable set of finite measure. Then for ε > 0, there is a com-

pact set C , which is a finite union of disjoint closed cubes, which satisfies

m(E∆C ) < ε.

Proof. Since E is measurable, there is an open set U ⊆ Rd , containing E , and such

that m(U \ E) < ε/2. The set U is an almost disjoint union of closed cubes Qn with

m(U ) =∑
n

V (Qn).
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We truncate this series so that ∑
n>N

V (Qn) ≤ ε/4.

Next, we replace the cubes Qn (with n ≤ N ) with a slightly smaller cube Q ′
n ⊆ Qn ,

with the same center, and whose volume is V (Qn)−ε/2n+2. Our hope is that

C = ⋃
n≤N

Q ′
n

is a good approximation to E . If x ∈ E∆C then x ∈ E \C or else x ∈U \ E . So

m(E∆C ) ≤ m(U \ E)+m(E \C ) ≤ ε/4+m(E \C ).

Since E ⊆ U , x ∈ E \ C only if x ∈ Qn for some n > N or else x ∈ Qn \ Q ′
n for some

n ≤ N . But

m

( ⋃
n>N

Qn

)
≤ ε/4

and

m

( ⋃
n≤N

Qn \Q ′
n

)
≤ ∑

n≤N
V (Qn)−V (Q ′

n) ≤ ∑
n≤N

ε

2n+2
≤ ε/4.

All together, we have

m(E∆C ) ≤ 3ε/4 < ε.

Finally, C is compact as it is a finite union of closed cubes.

The second principle tells us that all convergent sequences of functions are nearly

uniformly convergent.

Theorem 3.10: Egorov’s Theorem

Let { fn} be a sequence of functions defined on a measurable set E with finite

measure, and converging pointwise to f . Then for ε > 0 there is a set B ⊆ E

with m(B) < ε and such that fn → f uniformly on E \ B .

Proof. Let

Ek,N = {x : | fn(x)− f (x)| ≤ 1/k for n ≥ N }.

Then the sets Ek,N are increasing in N and measurable, as

Ek,N = (| fn − f |)−1((−∞,1/k]).

We also have

E = ⋃
N≥1

Ek,N
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for all k. Indeed, for any x there is some N for which | fn(x)− f (x)| ≤ 1/k, and for

that N , and all N ′ ≥ N , we have x ∈ Ek,N ′ . Since E has finite measure and

m(Ek,N ) → m(E),

there is some Nk such that m(Ek,Nk ) > m(E)−ε/2k . Let B = ⋃
k E \ Ek,Nk (which is

measurable) so that

m(B) ≤
∞∑

k=1
m(E \ Ek,Nk ) ≤

∞∑
k=1

ε

2k
≤ ε.

Now

B =⋃
k

E ∩ (Ek,Nk )c = E ∩⋃
k

(Ek,Nk )c = E ∩
(⋂

k
Ek,Nk

)c

.

Thus if x ∈ E \ B , x belongs to
⋂

k Ek,Nk and hence | fn(x)− f (x)| ≤ 1/k for n ≥ Nk ,

which implies uniform convergence.

Littlewood’s final principle tells us that all measurable functions are almost con-

tinuous. We begin with a lemma.

Lemma 3.26

Let f be a measurable function defined on a measurable set E of finite mea-

sure. Then there is a sequence of step functions

sn =
Mn∑
j=1

c j 1Qn, j

with Qn, j a collection of disjoint closed cubes, and such that sn → f pointwise

almost everywhere.

Proof. We already know that there are simple functions φn → f . Write

φn =∑
l

dl 1El

for some disjoint sets El ⊆ E . These sets are measurable and have finite measure,

and so can be approximated by a finite union of disjoint cubes
⋃

k Ql ,k by Little-

wood’s first principle, and such that

∑
l

m

(
El∆

⋃
k

Ql ,k

)
< 1/2n .

We let

sn =∑
l

dl

∑
k

1Ql ,k
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and observe that we have only altered φn on the set

Bn =⋃
l

El∆
⋃
k

Ql ,k ,

a set of measure at most 1/2n . Now φn(x) → f (x) pointwise and the only way this

can fail for sn is if sn(x) ̸= φn(x) for infinitely many n, which means x ∈ Bn for in-

finitely many n. But then

x ∈
∞⋂

N=1

⋃
n≥N

Bn .

However

m

( ⋃
n≥N

Bn

)
≤ ∑

n≥N
m(Bn) ≤ ∑

n≥N

1

2n
≤ 1

2N
.

Thus

m

( ∞⋂
N=1

⋃
n≥N

)
≤ m

( ⋂
n≥M

)
≤ 1

2M

for all M and hence m (
⋂

N
⋃

n≥N ) = 0.

Theorem 3.11: Lusin’s Theorem

Let f : E → R be a measurable function defined on a set E which has finite

measure. Then for any ε> 0, there is a set B with m(B) < ε such that f , when

restricted to E \ B , is continuous.

Proof. We know that f is a limit of step functions

sn =
Mn∑
j=1

d j 1Q j

by the preceding lemma. Such functions are locally constant, and hence continu-

ous, unless x belongs to the boundary of some Q j . So there is a measure zero set Bn

off of which sn is continuous. By Egorov’s theorem, we can find a set B of measure

at most ε such that off of B , sn → f uniformly. Thus off of B
⋃

n Bn we have a se-

quence of continuous functions converging uniformly to f , and so f is continuous

there too. Moreover, m(B ∪⋃
n Bn) < ε as needed.
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4
INTEGRATION

4.1 Defining the integral

For a simple function

φ=∑
i

ci 1Ei

supported on a sets of finite measure, we would like to define∫
φ=∑

i
ci m(Ei ).

There is some cause for concern however, as it is not clear at first that this is well-

defined. There may be more than one way to write a simple function as a linear

combination of indicator functions, and we need to be sure that the integral is de-

fined the same way regardless of said representation. It will be convenient to define

the canonical form of a simple function. We say

φ=∑
i

ci 1Ei
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is in canonical form if ci ̸= 0 for any i , the numbers ci are distinct, and the sets Ei

are disjoint. In this way

φ−1(a) =


Ei if a = ci

(
⋃

i Ei )c if a = 0

; otherwise.

Lemma 4.1

Let

φ=
m∑

i=1
ci 1Ei =

n∑
j=1

d j 1F j

be a simple function on Rd , for some finite collections of measurable sets Ei

and F j . Then
m∑

i=1
ci m(Ei ) =

n∑
j=1

d j m(F j ).

Proof. We assume that
∑m

i=1 ci 1Ei is the canonical representation. Let J be a subset

of [n] and set

G J = {x ∈Rd : x ∈ F j for j ∈ J , x ̸∈ F j for j ̸∈ J } = ⋂
j∈J

F j ∩
⋂
j∉J

F c
j ,

so the G J is always measurable. The sets G J with J ⊆ [n] partition Rd . Moreover,

G J ⊆ F j whenever j ∈ J , so that

m(F j ) = ∑
J⊇ j

m(G J ),

and hence ∑
j

d j m(F j ) = ∑
J⊆[n]

m(G J )
∑
j∈J

d j .

Next set G J ,i =G J ∩Ei , so that

∑
J⊆[n]

m(G J ,i ) = m(Ei ),
m∑

i=1
m(G J ,i ) = m(G J )

and hence
m∑

i=1
ci m(Ei ) = ∑

J⊆[n]

m∑
i=1

ci m(G J ,i ).

If there is some x ∈G J ,i , we must have∑
j∈J

d j =φ(x) = ci .
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Otherwise, G J ,i is empty and m(G J ,i ) = 0. In either case

m(G J ,i )ci = m(G J ,i )
∑
j∈J

d j

∑
J⊆[n]

m∑
i=1

ci m(G J ,i ) = ∑
J⊆[n]

m∑
i=1

m(G J ,i )
∑
j∈J

d j =
∑

J⊆[n]
m(G J )

∑
j∈J

d j .

Definition 4.1: Lebesgue integral for simple functions

Let

φ=∑
i

ci 1Ei

be a simple function on Rd . Then we define∫
φ=∑

i
ci m(Ei ),

provided there are no sets Ei , E j with m(Ei ) = m(E j ) =∞ and ci c j < 0.

Lemma 4.2

If φ1 and φ2 are simple functions, and c is a real number, then

1.
∫

cφ1 +φ2 = c
∫
φ1 +

∫
φ2,

2. for any disjoint measurable sets E1 and E2,
∫

E1∪E2
φ1 =

∫
E1
φ1 +

∫
E2
φ1,

3. if φ1 ≤φ2 pointwise then
∫
φ1 ≤

∫
φ2, and

4.
∣∣∫ φ1

∣∣≤ ∫ |φ1|.

Proof. Write φ1 =∑
j c j 1A j and φ2 =∑

k dk 1Bk , in canonical form. Then∫
cφ1 +φ2 =

∫
∼ j cc j 1A j +

∑
k

dk 1Bk =
∑

j
cc j m(A j )+∑

k
dk m(Bk ) = c

∫
φ1 +

∫
φ2.

This shows (1). For (2), we have∫
E1∪E2

φ1 =
∫

1E1∪E2φ1 =
∫

(1E1 +1E2 )φ1 =
∫

1E1φ1 +
∫

1E2φ1 =
∫

E1

φ1 +
∫

E2

φ1,

where we’ve used disjointness in the second equality and (1) in the third.

For (3), we let C j k = A j ∩Bk , so∑
j ,k

c j 1C j k =φ1 ≤φ2 =
∑
j ,k

dk 1C j k
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so, since the sets C j k are disjoint (using that φ1 and φ2 were in canonical form), we

must have c j ≤ dk whenever C j k is non-empty. In this way∫
φ2 −

∫
φ1 =

∑
j ,k

m(C j k )(dk − c j ) ≥ 0.

Finally, for (4), −|φ1| ≤φ1 ≤ |φ1| pointwise, so

−
∫

|φ1| ≤
∫
φ1 ≤

∫
|φ1|.

Since non-negative measurable functions are monotone limits of simple func-

tions, we can immediately extend the definition. Recall that the support of f is the

set supp( f ) = {x ∈Rd : f (x) ̸= 0}, and that

f = f+− f−, f+ = max{ f ,0}, f− =−min{ f ,0}.

Definition 4.2: Lebesgue integral for measurable functions

Let f :Rd →R be a non-negative measurable function. Then we define∫
f = sup

φ

∫
φ

whereφ ranges over all simple functions with the property 0 ≤φ(x) ≤ f (x) for

all x and m(supp(φ)) <∞. If this integral is finite, we call f integrable. If f

is not non-negative, we write f = f+− f− where f+ and f− are non-negative,

and we set ∫
f =

∫
f+−

∫
f−

provided both f+ and f− are integrable, and in this case we call f integrable.

Note that we can safely omit the m({x :φ(x) ̸= 0}) <∞ condition just by replacing

φ with 1∥x∥≤Nφ, which is still a simple function, and then sending N →∞.

Theorem 4.1

If f1 and f2 are non-negative, measurable functions, then

1. for any disjoint measurable sets E1 and E2,
∫

E1∪E2
f1 =

∫
E1

f1 +
∫

E2
f1,

2. if f1 ≤ f2 pointwise then
∫

f1 ≤
∫

f2.

Proof. The proof of this theorem comes from the corresponding results for simple

functions along with approximation. Property (2) is merely because any simple
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function dominated by f1 is also dominated by f2.∫
f = sup

0≤φ≤ f1

∫
φ≤ sup

0≤φ≤ f2

∫
φ=

∫
f2.

For property (1), note that if φ is a simple function dominated by f1, then

1E1∪E2φ= 1E1φ+1E2φ

and 1Eiφ is a simple function dominated by 1Ei f for i = 1,2. Thus∫
E1∪E2

φ=
∫

E1

φ+
∫

E2

φ≤
∫

E1

f1 +
∫

E2

f1

and so taking supremums, ∫
E1∪E2

f1 ≤
∫

E1

f1 +
∫

E2

f1.

Conversely, if φ1 and φ2 are non-negative, simple functions dominated by 1E1 f1

and 1E2 f1 then φ1 +φ2 is dominated by 1E1∪E2 f1 and so∫
E1

φ1 +
∫

E2

φ2 =
∫

E1∪E2

φ1 +φ2 ≤
∫

E1∪E2

f1

and taking supremums finishes the proof.

Corollary 4.1

If f and g are integrable functions, then

1. for any disjoint measurable sets E1 and E2,
∫

E1∪E2
f = ∫

E1
f +∫

E2
f ,

2. if f ≤ g pointwise then
∫

f ≤ ∫
g , and

3.
∣∣∫ f

∣∣≤ ∫ | f |.

Proof. First∫
E1∪E2

f =
∫

E1∪E2

f+−
∫

E1∪E2

f− =
∫

E1

f++
∫

E2

f+−
∫

E1

f−−
∫

E2

f− =
∫

E1

f +
∫

E2

f .

Next, if f ≤ g then f+ ≤ g+ while f− ≥ g−, so∫
f =

∫
f+−

∫
f− ≤

∫
g+−

∫
g− =

∫
g .

Finally, we may assume that
∫

f+ ≥ ∫
f−, then∣∣∣∣∫ f

∣∣∣∣= ∫
f+−

∫
f− ≤

∫
f++

∫
f− =

∫
| f |.
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Lemma 4.3

If f = 0 almost everywhere then
∫

f = 0.

Proof. Both f− and f+ are also zero almost everywhere, so we can assume f is non-

negative. In that case, and simple function φ dominated by f has to vanish almost

everywhere too, and so
∫
φ= 0.

Already, we have all the necessary tools to prove our first convergence theorem.

A common theme is to break an integral into pieces, as in (1) of Corollary 4.1, and

handle the pieces separately.

Theorem 4.2: Bounded Convergence Theorem

Suppose that { fn} is a sequence of functions all supported in a measurable set

E of finite measure. Suppose that supn | fn(x)| ≤ M for almost all x, and that

fn → f pointwise almost everywhere. Then∫
| fn − f |→ 0.

Proof. By Egorov’s theorem, for any ε> 0, there is a measurable set Bε ⊆ E of mea-

sure at most ε/4M and such that off of Bε, fn → f uniformly. If n is sufficiently

large, ∫
E\Bε

| fn − f | ≤
∫

E\Bε
ε/2m(E) < ε/2.

Meanwhile, on Bε, we still have | fn | ≤ M almost everywhere, and fn → M almost

everywhere. So Bε = X ∪Y where Y has measure zero, and on X , we have supn | fn | ≤
M and | f | ≤ M . By the preceding lemma∫

Y
| fn − f | = 0

and on X , we have ∫
X
| fn − f | ≤

∫
X

2M ≤
∫

Bε
2M ≤ ε/2.

Corollary 4.2

Let φn be a sequence of uniformly bounded, non-negative simple functions

supported on E of finite measure, converging pointwise to f from below.

Then
∫
φn → ∫

f .
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Proof. On the one hand, φn is dominated by f so∫
φn ≤

∫
f .

If ψ is any non-negative simple function dominated by f with∫
f −ε≤

∫
ψ≤

∫
f ,

thenψn = min{φn ,ψ} is a non-negative simple function bounded by f , andψn →ψ

pointwise. We have ∣∣∣∣∫ ψn −
∫
ψ

∣∣∣∣= ∣∣∣∣∫ ψn −ψ
∣∣∣∣≤ ∫

|ψn −ψ|→ 0

by the Bounded Convergence Theorem. Thus for n sufficiently large∫
f −2ε≤

∫
ψ−ε≤

∫
ψn ≤

∫
φn

so ∫
f −

∫
φn ≤ 2ε.

Theorem 4.3: Linearity of the integral

If f1 and f2 are non-negative, bounded and measurable functions with sup-

port of finite measure, and if c ≥ 0 then

1.
∫

c f1 + f2 = c
∫

f1 +
∫

f2,

Proof. The proof of this theorem comes from the corresponding results for simple

functions along with approximation.

First if c ≥ 0, then φ is a simple function dominated by f1 if and only if cφ is a

simple function dominated by c f1. so∫
c f = sup

0≤φ≤ f

∫
cφ= c sup

0≤φ≤ f

∫
φ= c

∫
f1,

so we can assume c = 1.

Now suppose first that f1 and f2 have supports with finite measure. Let {φ(1)
n } and

{φ(2)
n } be sequences of simple functions increasing to f1 and f2, respectively, which

exist by Theorem 3.6. Then∫
f1 + f2 = lim

∫
φ(1)

n +φ(2)
n = lim

∫
φ(1)

n + lim
∫
φ(2)

n =
∫

f1 +
∫

f2.
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Theorem 4.4: Fatou’s Lemma

Let fn be a sequence of non-negative measurable functions converging to f

almost everywhere. Then ∫
f ≤ liminf

n

∫
fn .

Proof. Let φ be a simple function dominated by f , and with support of finite mea-

sure, so that
∫
φ ≤ ∫

f . Let φn = min{φ, fn}. Then φn → φ almost everywhere, and

the functions φn are bounded (since φ is) hand have support of finite measure. So,

by linearity the Bounded Convergence Theorem∣∣∣∣∫ φ−φn

∣∣∣∣≤ ∫
|φ−φn |→ 0.

It follows that ∫
φ≤ liminf

f

∫
φn ≤ liminf

n

∫
fn .

This holds for all simple φ dominated by f and hence∫
f ≤ liminf

n

∫
fn .

Corollary 4.3: Monotone Convergence Theorem

Let { fn} be a sequence of non-negative measurable functions increasing to a

measurable function f pointwise. Then∫
fn →

∫
f .

Proof. Indeed, ∫
fn ≤

∫
f

for all n by monotonicity, so

limsup
n

∫
fn ≤

∫
f ≤ liminf

n

∫
fn

and thus ∫
f = liminf

n

∫
fn = limsup

n

∫
fn = lim

∫
fn .
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Corollary 4.4

Let f :Rd →R be a non-negative measurable function. Then∫
f = lim

N→∞

∫
EN

f

where

EN = {x : ∥x∥ ≤ N , | f (x)| ≤ N }.

Proof. Since
⋃

N EN = Rd and the sets EN are increasing, the functions 1EN f in-

crease to f monotonically. The result now follows from the Monotone Convergence

Theorem.

Corollary 4.5: Linearity of the integral, again

Suppose f and g are integrable functions, and c is a constant. Then∫
c f + g = c

∫
f +

∫
g .

Proof. First assume c ≥ 0 and f and g are non-negative. We have
∫

f = lim
∫

fn and∫
g = lim

∫
gn where fn and gn are increasing monotonically to f and g , and are

bounded with support of finite measure. Then

c
∫

f +
∫

g = limc
∫

fn + lim
∫

gn = lim
∫

c fn + gn =
∫

c fn + gn ,

again by the Monotone Convergence Theorem.

If f and g are not non-negative, but c ≥ 0, we can apply the preceding result to

f+, g+, f− and g−, using that c f+ = (c f )+. Finally if c ≤ 0, replace f with − f and c

with −c.

We now proceed to the most powerful of all convergence theorems. First we need

some integrability results.
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Lemma 4.4

If f is an integrable function on Rd then | f | <∞ almost everywhere,∫
∥x∥>N

| f | < ε

for N sufficiently large, and if δ is sufficiently small, then∫
E
| f | < ε

for any measurable set E of measure at most δ. In particular, if N is suffciently

large, ∫
| f |≥N

| f | < ε.

Proof. For the first claim, we have∫
∥x∥≤N

| f |→
∫

| f |

by the Monotone Convergence Theorem, so if N is sufficiently large, we must have∫
∥x∥>N

| f | =
∫

| f |−
∫
∥x∥≤N

f < ε.

Next | f | is non-negative, and if | f | =∞ on E then∫
| f | ≥

∫
E
| f | ≥ N m(E)

for any N so m(E) = 0.

Finally, assuming | f | is bounded (as we may, since it is finite almost everywhere),

from the Monotone Convergence Theorem, we know∫
| f | = lim

N

∫
EN

| f |

where

EN = {x : ∥x∥ < N , | f (x)| < N },

so it suffices to prove the second claim when f is bounded and has support with

finite measure. If | f | ≤ N everywhere, and E has measure at most δ then∫
E
| f | ≤ Nδ< ε

if δ< ε/N . Again ∫
| f |≥N

| f | ≥ N m({x : | f (x)| ≥ N })

and so m({x : | f (x)| ≥ N }) < δ for N sufficiently large, and the final claim follows.
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Theorem 4.5: Dominated Convergence Theorem

Suppose { fn} is a sequence of integrable functions, such that | fn | ≤ g a.e. for

some integrable g and each n. If fn → f pointwise almost everywhere, then∫ | fn − f |→ 0.

Proof. Since fn → f almost everywhere, | f | ≤ g almost everywhere too. Ignoring

the set of measure zero where this fails (which does not contribute to the integrals),

we have | fn− f | ≤ | fn |+| f | ≤ 2|g |. Thus if E1 = {x : ∥x∥ ≥ N } and E2 = {x : |g (x)| ≥ N },

then for N sufficiently large. Then∫
Ei

| fn − f | ≤
∫

Ei

2|g | < ε

for i = 1,2, by the preceding lemma. On the remaining set, E , which has finite

measure, fn and f are bounded and so by the Bounded Convergence Theorem,∫
E
| fn − f |→ 0.

4.2 The Differentiation Theorem

Lemma 4.5: Vitali’s Covering Lemma

Let B be a finite set of balls in Rd . Then there is a finite subset B′ of B such

that the balls in B′ are disjoint and⋃
B∈B′

3B ⊇ ⋃
B∈B

B ,

where 3B denotes the dilation of B by a factor of 3.

Proof. Iteratively apply the following rule, beginning with B′ = ;: if B ∈ B \ B′ is

such that B is disjoint from each ball in B′ and has maximal radius among all such

balls in B then add B to B′.

The process has to terminate in finitely many steps since B is finite, and the balls

in B′ are disjoint by construction. If x belongs to some ball B ′ from B \B′ then B ′

cannot be disjoint from all balls in B′, or else we could add it to B′. Let B be the

first ball added to B′ which intersected B ′. At this stage we could have added B ′ to

B′ instead, but we opted not to, and this can only have happened if the radius of

B ′, say r ′, is smaller than that of B , say r . So B ′ intersects B and has smaller radius.

If c is the centre of B and c ′ the centre of B ′, and if y is a point in their intersection,
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then

∥x − c∥ ≤ ∥x − c ′∥+∥c ′− y∥+∥y − c∥ ≤ r ′+ r ′+ r ≤ 3r.

This shows x ∈ 3B .

Definition 4.3: The Hardy-Littlewood Maximal Function

Let f be an integrable function. Then we define the function

(M f )(x) = sup
B

1

m(B)

∫
B

f

where the supremum is taken over all balls B such that x ∈ B .

Lemma 4.6

If f is integrable then M f is measurable.

Proof. Let a ∈R, we then need to show that Ea = {x : (M f )(x) > a} is measurable. If

x ∈ Ea then there is a ball B for which

1

m(B)

∫
B

f > a.

The same is true for any other y ∈ B since the left hand side is unchanged, and so

(M f )(y) > a too. Thus in fact Ea is open.

Lemma 4.7

Let f be integrable. Then M f is finite almost everywhere, and

m({x : |(M f )(x)| >λ}) ≤ 3d

λ

∫
| f |.

Proof. We prove the second claim, the first will follow immediately. Set

Eλ = {x : |(M f )(x)| >λ}

and E N
λ
= Eλ∩{x : ∥x∥ ≤ N }. Now E N

λ
has finite measure and so can be approximated

by a compact set C to within ε:

m(E N
λ )−ε< m(C ).

For each x ∈C , there is a ball Bx containing x and with∫
Bx

f >λm(Bx).
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Since C is compact, it can be covered by finitely many Bxs, say those with x ∈ X for

some finite set X . Applying the Vitali Covering Lemma, we can find a subset X ′ ⊆ X

such that the balls Bx with x ∈ X ′ are disjoint, and their dilations by 3 still cover C .

By disjointness,

λ
∑

x∈X ′
m(Bx) ≤ ∑

x∈X ′

∫
Bx

| f | ≤
∫

| f |.

However, m(3Bx) = 3d m(Bx), and

C ⊆ ⋃
x∈X ′

3Bx =⇒ m(C ) ≤ ∑
x∈X ′

m(3Bx) = 3d
∑

x∈X ′
m(Bx).

So

m(E N
λ )−ε≤ 3d

λ

∫
| f |.

Taking ε→ 0 and then N →∞ concludes the proof.

Theorem 4.6: Lebesgue’s Differentiation Theorem

et f be an integrable function. Then for almost every x

lim
m(B)→0

1

m(B)

∫
B

f → f (x)

where the limit is taken over all balls B containing x and with radius tending

to 0.

Proof. First, by replacing f with f 1{∥x∥<N ,| f (x)|<N }, and letting N → ∞ we can as-

sume that f has support of finite measure and is bounded.

In this case, we know that there are step functions sn → f pointwise almost every-

where by Lemma 3.7. If

sn =∑
j

c j 1Q j

where the Q j are disjoint cubes, we can just as well assume that c j ≤ sup | f | = N .

Indeed, we just replace c j by N if c j > 0 or −N if c j < 0. Then

| f (x)−N | ≤ | f (x)− c j |

for x ∈Q j and we still have a step function.

Now, we will prove the theorem by showing that

X t =
{

x : limsup
B

∣∣∣∣ 1

m(B)

∫
B

f − f (x)

∣∣∣∣> t

}
= 0

for each t > 0. Given x ∈ X t and some ball B containing x, we have

1

m(B)

∫
B

f − f (x) =
(

1

m(B)

∫
B

f − sn

)
+

(
1

m(B)

∫
B

sn − sn(x)

)
+ (sn(x)− f (x)).
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The first term is at most

1

m(B)

∫
B
| f − sn | ≤M (| f − sn |)(x),

the second is at most
1

m(B)

∫
B
|sn − sn(x)|

and the third is at most |sn(x)− f (x)|. Thus we have

t < limsup
B

∣∣∣∣ 1

m(B)

∫
B

f − f (x)

∣∣∣∣<M (| f −sn |)(x)+limsup
B

1

m(B)

∫
B
|sn−sn(x)|+|sn(x)− f (x)|

and so for x ∈ X t , we have on of the following:

M (| f − sn |)(x) > t/3, limsup
B

1

m(B)

∫
B
|sn − sn(x)| > t/3, or |sn(x)− f (x)| > t/3.

We let

U = {x : M (| f − sn |)(x) > t/3},

V = {x : limsup
B

1

m(B)

∫
B
|sn − sn(x)| > t/3},

W = {x : |sn(x)− f (x)| > t/3}.

By the preceding lemma,

m(U ) ≤ 3d

t/3

∫
| f − sn |,

and by Chebyshev’s inequality

m(V ) ≤ 1

t/3

∫
| f − sn |.

To estimate V , note that once B ⊆Q j for some j ,∫
B
|sn − sn(x)| = 0

since sn is constant on Qn . So if x ∈Qo
j for some j then

limsup
B

∫
B

1

m(B)
|sn − sn(x)| = 0.

The same is true if x ̸∈Q j , since for B sufficiently small containing x sn(y) = sn(x) =
0 for y ∈ B . So

m(V ) ≤∑
j

m(∂Q j ) = 0.

It thus suffices to show that
∫ | f − sn | → 0, but this now follows from the Domi-

nated Convergence Theorem.
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5
INTRO. TO DISCRETE ANALYSIS

5.1 The complex exponential

Recall that for a complex number z = x + i y we have the polar form

z = |z|e(2πi arg z)

where, in our case, we have normalized the argument to lie between 0 and 1. Thus

arg z is the proportion of the full circumference of the unit circle taken up by the

angle z makes with the positive x-axis. This polar form is made possible by Euler’s

identity

e iθ = cos(θ)+ i sin(θ).

Since we will prefer the normalized argument, we define the related function

e(θ) = e2πiθ

so that now, polar coordinates take the form

z = |z|e(arg(z)).
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Lemma 5.1

The function e possesses the following qualities:

1. |e(θ)| = 1 for all real numbers θ,

2. e(n) = 1 for all integers n, and consequently e is periodic with period 1,

3. e(θ+τ) = e(θ)e(τ), for all real numbers θ and τ, and

4. e(nθ) = (e(θ))n for all real numbers θ and integers n.

Proof. Properties (1) and (2) follow immediately from Euler’s identity. Property (3)

follows from the fact that e is an exponential. Property (4) follows from (3) for all

non-negative integers, while if n < 0 is an integer, then

e(θ)ne(−nθ) = e(nθ)e(−nθ) = 1

shows that e(−nθ) = 1/(e(θ))n .

The next property of the function e is one of the most vital and will be fundamen-

tal to almost everything in the course.

Theorem 5.1: The orthogonality relations

Let n ∈Z. Then ∫ 1

0
e(nθ)dθ =

1 n = 0,

0 n ̸= 0.

We’ll give two proofs.

First proof. If n = 0 then we just have
∫ 1

0 1dθ = 1. If n ̸= 0, then we consider a Rie-

mann sum approximation to the integral∫ 1

0
e(nθ)dθ = lim

k→∞
1

k

k−1∑
j=0

e(n j /k) = lim
k→∞

1

k

k−1∑
j=0

(e(n/k)) j .

But the sum on the right is over a geometric progression, so

1

k

k−1∑
j=0

e(n j /k) = 1

k

e(n/k)k −1

e(n/k)−1
= 0.

The latter is because e(n/k)k = e(n) = 1 while if k > n then e(n/k) ̸= 1.
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Second proof. Again the case n = 0 is trivial. If n ̸= 0 consider the function F (x, y) =
−sx+t y

2πn (where we leave s and t as parameters to choose later) and its gradient field

∇F =
( −s

2πn
,

t

2πn

)
.

This vector field is conservative and so integrates to zero over any closed curve. We

use the closed curve parametrized by r (θ) = (cos(2πnθ),sin(2πnθ)) with 0 ≤ θ ≤ 1,

which wraps around the unit circle n times. Then

0 =
∫

∇F ·dr =
∫ 1

0

( −s

2πn
,

t

2πn

)
· (−2πn sin(2πnθ),2πn cos(2πnθ))dθ

= s
∫ 1

0
sin(2πnθ)dθ+ t

∫ 1

0
cos(2πnθ)dθ.

Now choose s = ∫ 1
0 sin(2πnθ)dθ and t = ∫ 1

0 cos(2πnθ)dθ to get

0 = s2 + t 2 = |t + i s|2.

So ∫ 1

0
e(nθ)dθ = t + i s = 0.

The term orthogonality relations is perhaps a bit confusing at first. It does come

from an inner product, however. Since we will use the periodicity properties of e,

we write T=R/Z for the set of real numbers modulo the equivalence relation x ≡ y

if x − y ∈Z. A complete set of representatives for this relation is [0,1).

Definition 5.1: The space L2(T)

Consider the set L 2 = { f : [0,1] → C :
∫ 1

0 | f |2 < ∞} consisting of (complex-

valued) Lebesgue square-integrable functions. We define an equivalence re-

lation on L 2 by

f ∼ g ⇐⇒ f − g = 0 a.e.

Then L2(T) consists of equivalence classes of this relation.

It turns out that L2 is endowed which the structure of a Hilbert space (a complex

inner product space which is complete as a metric space).
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Definition 5.2: Complex inner product space

A complex vector space V is an inner product space if there is a function 〈·, ·〉 :

V ×V →C such that

Positivity: 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0,

Linearity: 〈v + cu, w〉 = 〈v, w〉+ c〈u, w〉,

Conjugate-symmetry: 〈v,u〉 = 〈u, v〉

holds for all vectors u, v, w ∈ V and scalars c ∈ C. We then define a norm on

V by ∥v∥ = p〈v, v〉. If this norm induces a complete metric space, then V is

called a Hilbert space.

The reason for not defining L2 on functions, rather than equivalence classes, is

that if g = 0 almost everywhere then
∫ 1

0 f g = 0 regardless of f . This is incompatible

with (1), as we shall see.

Lemma 5.2

The space L2(T) is a complex inner product space.

Proof. Let [ f ] and [g ] be two equivalence classes, represented by functions f and

g respectively. We set

〈[ f ], [g ]〉 =
∫ 1

0
f (θ)g (θ)dθ.

This is well-defined: if u, v ∈L 2 are 0 almost everywhere then∫ 1

0
( f (θ)+u(θ))(g (θ)+ v(θ))dθ

=
∫ 1

0
f (θ)g (θ)dθ+

∫ 1

0
u(θ)g (θ)dθ+

∫ 1

0
f (θ)v(θ)dθ+

∫ 1

0
u(θ)v(θ)dθ

and since f v , ug and uv are 0 almost everywhere, those integrals vanish.

Now properties (2), (3) and (4) are straightforward from the linearity properties of

integral, and we just check (1). Since | f (θ)|2 ≥ 0 we have

〈[ f ], [ f ]〉 ≥ 0.

From measure theory, we know that if F ≥ 0 is an integrable function with
∫

F = 0

then F = 0 almost everywhere. So in our case | f |2 = 0 almost everywhere, which

means f = 0 almost everywhere (since f = 0 ⇐⇒ | f |2 = 0), and so [ f ] = [0].

Strictly speaking, when we speak of elements of L2, we aren’t talking about func-

tions, but about equivalence classes. In practice, however, we will just refer to L2
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functions with the caveat that anything said is meant to be interpreted almost ev-

erywhere.

Theorem 5.2: T

e set of functions {e(nθ)}n∈Z is orthonormal in L2(T).

Proof. Indeed,

〈e(mθ),e(nθ)〉 =
∫ 1

0
e(mθ)e(nθ)dθ =

∫ 1

0
e((m −n)θ)dθ =

1 n = m

0 n ̸= m.

5.2 Absract measure spaces

Taking inspiration from the Lebesgue measure we define a list of axioms that will al-

low us to reproduce, mutatis mutandis, a number of the theorems we proved about

the Lebesgue measure and integral. You will recall that we had to establish these

facts, with a fair amount of work, when we defined the Lebesgue measure. Here we

take them for granted.

Definition 5.3: Abstract measure space

An abstract measure space consists of three pieces of information, stored as a

triple (X ,Σ,µ), namely a set of points X , a σ-algebra of measurable sets Σ and

a measure µ :Σ→ [0,∞] satisfying the properties

1. µ(;) = 0, and

2. µ(
⊔∞

n=1 An) = ∑∞
n=1µ(An) for any countable collection of pairwise dis-

joint sets {An} ⊆Σ.

The measure space is called finite ifµ(X ) <∞ and is called a probability space

if µ(X ) = 1.

As is so often the case in math, when we have a nicely defined object, we are wont

to define the nice maps between said objects.

Definition 5.4: Measurable function

If (X ,ΣX ,µX ) and (Y ,ΣY ,µY ) are two measure spaces, then a measurable

function is a function f : X → Y such that f −1(B) ∈ΣX for B ∈ΣY .
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Notice that we don’t actually need the measuresµX andµY to define a measurable

function, or a measurable set for that matter – only the σ-algebras are needed. For

that reason, we will refer to the pair (X ,ΣX ) as a measurable space, and reserve the

freedom to choose any measure on this space.

Example. The triple ([0,1],M ,m) consisting of [0,1] ⊆R,

M = {A ⊆ [0,1] : A is Lebesgue measurable}

and m the Lebesgue measure restricted to [0,1] is a probability space.

Example. Let f : [0,1] → [0,1] be a measurable function. The triple ([0,1],M ,µ f )

consisting of [0,1] ⊆R,

M = {A ⊆ [0,1] : A is Lebesgue measurable}

and the measure µ f defined by

µ f (A) =
∫

A
f (x)d x

is a finite measure space, and the function f is called the density function.

We will see later on that this way of producing new measures using integrals of

measurable functions extends to abstract measure spaces as well.

Example. Since constant functions are always be measurable, we can use the above

example to replace a finite measure µ by a probability measure. Indeed, suppose

(X ,Σ,µ) is a finite measure space and µ(X ) =C . Let f : X →R be the function f (x) =
1/C . In line with the previous example, we define

µ f (A) =
∫

A
f (x)d x = 1

C

∫
A

d x = µ(A)

C
,

and so in particular

µ f (X ) = µ(X )

C
= 1

and we have a probability space.

5.3 Finite L2 spaces

Suppose now that X is a finite set, which we want to turn into a probability space.

We first need to define a Σ-algebra which, being a subset of P (X ), is necessarily

finite and hence just an algebra.
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Lemma 5.3

Any algebra Σ on a finite set X corresponds to a partition of X , say

X =
n⊔

i=1
Xi

of non-empty sets called atoms. Any element of Σ is then a union of atoms.

The (Borel) measurable functions f : X → C are those which are constant on

atoms.

Proof. If we are presented with a partition of X as above, then we can just as well

define

Σ=
{⋃

i∈I
Xi : I ⊆ {1, . . . ,n}

}
,

and this is an algebra. Conversely, for x ∈ X we define

[x] = ⋂
A∈Σ:x∈A

A.

Then [x] ∈ Σ, being a finite intersection of sets from Σ, and moreover, the sets [x]

and [y] are either disjoint or equal. Thus we have defined a partition of X into sets

fromΣ. By construction, [x] is the smallest set inΣwhich contains x, and so if B ∈Σ
is measurable and contains x then it also contains [x], and consequently

B = ⋃
x∈B

[x]

is a union of atoms.

Now suppose f : X →C is measurable. Then f −1(z) = {x ∈ X : f (x) = z} is measur-

able and hence a union of atoms. If f (x) = z, then x ∈ f −1(z) whence [x] ⊆ f −1(z)

and hence f (y) = z for all y ∈ [x].

We now have everything we need to define one of the most important spaces in

analysis. Here we are only focusing on the discrete world, so our ambient set X is

finite. The definition extends in much the same way to infinite sets X but there are

some technical hurdles that need to be overcome. The reader familiar with inner

product spaces will probably see that there is little new here, but we are emphasiz-

ing an analytic viewpoint rather than the algebraic one.
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Definition 5.5: The space L2(X ,Σ,µ)

Let (X ,Σ,µ) be a probability space with X finite. Then the space L2(X ,Σ,µ)

consists of measurable functions f : X → C endowed with the structure of a

Hilbert space as follows. Suppose X = ⊔n
i=1 Xi is a decomposition of X into

atoms. Then f is constant on atoms, say f (Xi ) = zi , and we define the integral

of f as ∫
f dµ=

n∑
i=1

ziµ(Xi ) =
n∑

i=1
f (Xi )µ(Xi ).

This in turn induces an inner product

〈 f , g 〉 =
∫

f g dµ=
n∑

i=1
f (Xi )g (Xi )µ(Xi ).

An orthonormal basis for L2(X ,Σ,µ) is

B =
{

1√
µ(Xi )

1Xi : i = 1, . . . ,n

}
.

Indeed,〈
1√
µ(X j )

1X j ,
1√
µ(Xk )

1Xk

〉
=

n∑
i=1

1√
µ(X j )µ(X j )

1X j (Xi )1Xk (Xi )µ(Xi )

and notice that 1X j (Xi )1Xk (Xi ) = 0 unless i = j = k, in which case it is 1.

Corollary 5.1

Any function f ∈ L2(X ,Σ,µ) decomposes as a simple function of the form

f =
n∑

i=1
f (Xi )1Xi .

Proof. One can see this immediately by plugging in any x ∈ X . Indeed, if x ∈ X j

then the left hand side is f (x) = f (X j ) while the right hand side is

n∑
i=1

f (Xi )1Xi (x j ) = f (X j ).

Alternatively, one can use that if v1, . . . , vn form an orthonormal basis for V then

any vector u can be expressed in the form

u =
n∑

i=1
〈u, vi 〉vi ,
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which in our case tells us that

f =
n∑

i=1

〈
f ,

1Xi

µ(Xi )1/2

〉
1Xi

µ(Xi )1/2
=

n∑
i=1

〈
f ,1Xi

〉 1Xi

µ(Xi )
=

n∑
i=1

n∑
j=1

f (X j )1Xi (X j )µ(X j )
1Xi

µ(Xi )

and the inner summands all vanish but when i = j , giving

f =
n∑

i=1
f (Xi )1Xi .

It gets a bit tedious to have to recall the atoms of X every time we want to define

an integral. We can avoid this by writing µ(x) =µ(Xi )/|Xi | and then writing∫
f dµ=∑

x
f (x)µ(x).

Nothing is lost here, since both f and µ are constant on the atoms:

∑
x

f (x)µ(x) =
n∑

i=1

∑
x∈Xi

f (x)µ(x) =
n∑

i=1

∑
x∈Xi

f (Xi )
µ(Xi )

|Xi |
=

n∑
i=1

f (Xi )µ(Xi ).

Recall that a linear operator is a function T : V → V which maps a vector space

back into itself and is linear in the sense that T (cu + v) = cT (u)+T (v).

Definition 5.6: Integral kernel operators

Suppose K : X × X → C is a function, and suppose that for each x ∈ X , the

function Kx(y) = K (x, y) is measurable, and that for each y ∈ X , the function

K y (x) = K (x, y) is measurable. We define the integral kernel operator TK on

L2(X ,Σ,µ) by

[TK f ](x) =
∫

f Kxdµ= ∑
y∈X

f (y)K (x, y)µ(y).

Strictly speaking, we need to show that the above is really an operator – namely

that the output of the operator is also measurable.

Lemma 5.4

Suppose K : X × X → C is a function, and suppose that for each x ∈ X , the

function Kx(y) = K (x, y) is measurable, and that for each y ∈ X , the function

K y (x) = K (x, y) is measurable.Then TK f is measurable when f is.

Proof. We need only to show that TK f is constant on atoms. So let x1 and x2 lie

in a common atom. Thus, for each y , K (x1, y) = K y (x1) = K y (x2) = K (x2, y) since
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the function K y is measurable. But then, for each y , Kx1 (y) = Kx2 (y) and so the

functions Kx1 and Kx2 are identical. Thus

[TK f ](x1) =
∫

f Kx1 dµ=
∫

f Kx2 dµ= [TK f ](x2).

Proposition 5.1

All linear operators on L2(X ,Σ,µ) are integral kernel operators.

Proof. Indeed, suppose T is a linear operator. Then for x, y ∈ X with x ∈ Xi and

y ∈ Y j , and set

K (x, y) =
〈T 1Xi ,1X j 〉
µ(Xi )µ(X j )

which clearly satisfies the measurability conditions since it depends only on the

atoms Xi and X j . We claim T = TK . Indeed, since K is constant on atoms, we have

K (Xi , X j ) =
〈T 1Xi ,1X j 〉
µ(Xi )µ(X j )

= 1

µ(Xi )µ(X j )

n∑
k=1

[T 1Xi ](Xk )1X j (Xk )µ(Xk ) = [T 1Xi ](X j )

µ(Xi )

and thus.

[TK f ](X j ) =
n∑

i=1
f (Xi )K (Xi , X j )µ(Xi ) =

n∑
i=1

f (Xi )
[T 1Xi ](X j )

µ(Xi )
µ(Xi ) =

n∑
i=1

f (Xi )[T 1Xi ](X j ).

On the other hand, by linearity of T

[T f ](X j ) =
n∑

i=1
f (Xi )[T 1Xi ](X j ).

The fact that all operators have kernels, states as in the above theorem, does not

extend to the case when X is no longer finite.

Theorem 5.3

Let I be the identity operator on L2([0,1],M ,m). Then I is not an integral ker-

nel operator for any integrable function K : [0,1]× [0,1] →Cwith measurable

slices.

Proof. Suppose there were a function K : [0,1]× [0,1] →Cwhich acts as a kernel for

I . Then for any L2 function f ,

f (x) =
∫ 1

0
f (y)K (x, y)d y
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for almost every x. Thus if f (x) = 1[0,t ](x) for t ∈ [0,1] then

1[0,t ](x) =
∫ t

0
K (x, y)d y

for almost all x, say on a set At ⊆ [0,1] with m(At ) = 1 . It follows that if h > 0,

1

h

(
1[0,t+h](x)−1[0,t ](x)

)= 1

h

∫ t+h

t
K (x, y)d y = 1

h

∫ t+h

t
Kx(y)d y

holds for almost all x too, namely on At ∩ At+h . By the Lebesgue differentiation

theorem, as h → 0,
1

h

∫ t+h

t
Kx(y)d y → Kx(t )

holds for almost all t and x. To make this precise, we set h = 1/n and

Bn = At ∩ At+1/2 ∩ At+1/3 ∩ . . .∩ At+1/n

so that m(Bn) = 1 for all n. Moreover Bn is decreasing and measurable so Bt =⋂
n Bn

has measure 1 too, and for x ∈ Bt we have

1

1/n

(
1[0,t+1/n](x)−1[0,t ](x)

)= 1

1/n

∫ t+1/n

t
K (x, y)d y = 1

1/n

∫ t+1/n

t
Kx(y)d y.

Let S = {(x, t ) : x ∈ Bt } and for x ∈ [0,1] let Sx = {t : (x, t ) ∈ S}. Let us assume that for

almost all x, Sx is measurable and has measure 1. Then By the Lebesgue differenti-

ation theorem, there is a set Dx of measure 1 such that for t ∈ Dx ,

1

1/n

∫ t+1/n

t
Kx(y)d y → Kx(t ).

On the other hand,

1[0,t+h](x)−1[0,t ](x) = 1[t ,t+h](x)

so as long as x ̸= t , this tends to 0 as h → 0. Hence, given x ∈ B , we know that for

almost all t ∈ [0,1], Kx(t ) = 0. But then for such x,

f (x) =
∫ 1

0
f (y)K (x, y)d y = 0.

In other words, for almost all x, f (x) = 0 holds for every L2 function f . This is

obviously false.

The assumption on Sx is still left unjustified. We shall see that (later in the course)

that it follows from the Fubini-Tonelli Theorem.

Finally, given an operator, we want to know how it interacts with the inner prod-

uct.
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Definition 5.7: Adjoint operator

Let K : X × X → C define an integral kernel operator. Then the function K ∗ :

X ×X →C defined by

K ∗(x, y) = K (y, x)

is called the adjoint function of K , and TK ∗ is called the adjoint operator of

TK .

Lemma 5.5

The adjoint satisfies 〈TK f , g 〉 = 〈 f ,TK ∗g 〉.

Proof. We have

〈TK f , g 〉 = ∑
x∈X

[TK f ](x)g (x)µ(x)

= ∑
x∈X

∑
y∈X

f (y)K (x, y)g (x)µ(y)µ(x)

= ∑
y∈X

f (y)
∑

x∈X
K ∗(y, x)g (x)µ(x)µ(y)

= ∑
y∈X

f (y)[TK ∗g ](y)µ(y)

= 〈 f ,TK ∗g 〉.

5.4 Some examples

Before moving on, we can endow a set X with various σ-algebras and measures.

When these are understood, we might just write L2(X ) as opposed to L2(X ,Σ,µ) for

the sake of keeping notation brief.

5.4.1 Graphs

Our first example comes from combinatorics. Recall that a (simple, undirected)

graph G = (V ,E) consists of a set V of vertices (not to be confused with vector space)

and a set E of two-element subsets of V called the edges. Let X =V , Σ=P (V ) and

let µ({v}) = 1
|V | for any vertex v (so we are using the uniform probability measure

on V ). Then L2(V ,Σ,µ) just consists of all possible complex functions on V . This,

so far, uses nothing of the graph structure of V . However, the is a very important

operator, the adjacency operator A : L2(V ,Σ,µ) → L2(V ,Σ,µ) defined by

[A f ](v) = ∑
{u,v}∈E

f (u).
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This operator replaces f (v) by the “average" value of f at the neighbours of v in the

graph. For instance, if f = 1 is the constant function, then

[A1](v) = ∑
{u,v}∈E

1 = deg(v)

is the degree function. More generally, if f = 1U for some set U of vertices,

[A1U ](v) = ∑
{u,v}∈E

1U (u)

counts how many neighbours v has in the set U . In particular, if U = {u}, then

[A1U ](v) = 1E ({u, v}) tests whether {u, v} is an edge in the graph.

A particularly nice quality of A is its behaviour under iteration.

Lemma 5.6

Let u ∈V be a vertex and let n ≥ 0 be an integer. Then [An1{u}](v) counts the

number of paths of length n from u to v in the graph.

Proof. If n = 0 then An is the identity, and so [An1{u}](v) = 1{u}(v) just tests whether

u = v , which is the same as counting paths of length 0 (not moving) between u and

v . We have seen that [A1{u}](v) tests whether or not {u, v} is an edge, which is the

same as counting paths of length 1. Now we proceed by induction on n.

[A(n+1)1{u}](v) = [A(An1{u})](v) = ∑
{w,v}∈E

[An1{u}](w).

Now [An1{u}](w) counts the number of paths of length n from u to w . But then,

if {w, v} is an edge, any path of length n from u to w can be extended to a path of

length n+1 from u to v by traversing this edge. Conversely, any path of length n+1

from u to v has some penultimate vertex w so that {w, v} is an edge and we have

traversed n edges to get from u to w .

5.4.2 Finite cyclic groups

Let N ≥ 2 be an integer and let Z/NZ be the cyclic group of integers modulo N . We

set X = Z/NZ, Σ = P (Z/NZ) and µ(n) = 1
N for any residue class n. Consider the

kernel K :Z/NZ×Z/NZ→C defined by

K (m,n) = e(−nm/N ).

Then the associated integral transform satisfies

[TK ( f )](m) = 1

N

∑
n∈Z/NZ

f (n)e(−mn/N )
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and is called the discrete Fourier transform. It is so significant that, rather than write

TK f , we write

f̂ (m) = 1

N

∑
n∈Z/NZ

f (n)e(−mn/N ).

The adjoint function K ∗(m,n) is defined to be K ∗(m,n) = e(mn/N ). In fact, we

claim that the adjoint satisfies TK ∗ = 1
N T −1

K . Indeed,

[T ∗
K [TK f ]](m) = 1

N

∑
n∈Z/NZ

f̂ (n)e(mn/N ) = 1

N 2

∑
n∈Z/NZ

∑
l∈Z/NZ

f (l )e(−nl/N )e(mn/N ).

Interchanging the order of summation, we get

1

N 2

∑
l∈Z/NZ

f (l )
∑

n∈Z/NZ
e(n(l −m)/N ).

Then innermost sum, upon unraveling notation, is

N∑
n=1

(e2πi l−m
N )n =

N l = m

0 l ̸= m.

Thus we are left with a factor of N , but only for the summand l = m and we get

[T ∗
K [TK f ]](m) = f (m)

N
= 1

N
[T −1

K [TK f ]](m).

The inversion identity in the other direction is similar. Thus we have in fact shown

the Fourier inversion formula

f (m) = ∑
n∈Z/NZ

f̂ (n)e(mn/N ).

Suppose instead that g :Z/NZ is another function and define the convolve with g

operator whose kernel is Kg (m,n) = g (m −n). Thus

[TKg f ](m) = 1

N

∑
n∈Z/nZ

f (n)g (m −n).

This operator is so significant that we instead write [ f ∗ g ](m) or just f ∗ g (m).

The convolution operation will play a hefty part in this course, as will the Fourier

transform. This is because they are linked by the following beautiful identity.

Theorem 5.4: Convolution-to-product

Let f and g be functions in L2(Z/NZ,Σ,µ). Then

�f ∗ g (n) = f̂ (n)ĝ (n).
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Proof. By definition

�f ∗ g (n) = 1

N

∑
m∈Z/NZ

f ∗ g (m)e(−nm/N ),

and expanding out the definition of f ∗ g , we get

1

N

∑
m∈Z/NZ

1

N

∑
l∈Z/NZ

f (l )g (m − l )e(−nm/N ).

Now we interchange the order of summation to get

1

N

∑
l∈Z/NZ

f (l )
1

N

∑
m∈Z/NZ

g (m − l )e(−nm/N ).

Let’s focus on the inner sum. It ranges over all residue classes m ∈Z/NZ. There are

terms that involve l , but if we only look at the inner sum, we can consider l as being

fixed. Now we make a change of variable: u = m − l , so that m = l +u. As m ranges

over all residues in Z/NZ, so does u. In these new variables

1

N

∑
m∈Z/NZ

g (m − l )e(−nm/N ) = 1

N

∑
u∈Z/NZ

g (u)e(−n(l +u)/N )

= e(−nl/N )
1

N

∑
u∈Z/NZ

g (u)e(−nu/N )

and this is nothing more than e(−nl/N )ĝ (n). So if we plug that in, we get

�f ∗ g (n) = 1

N

∑
l∈Z/NZ

f (l )e(−nl/N )ĝ (n) = f̂ (n)ĝ (n).

The last example of an interesting operator is the first one where we’ll explore the

role of the σ-algebra. If Σ1 ⊆ Σ2 are σ-algebras, then the atoms of Σ1 need to be

unions of those from Σ2. In other words, the partition of X into the atoms of Σ1 is a

coarser partition than the partition into the Σ2-atoms.

Lemma 5.7

Suppose Σ1 ⊆ Σ2 are σ-algebras on X with X = ⊔N
i=1 Xi being the partition

into atoms of Σ1 then the atoms of Σ2 come from a further partition Xi =⊔n j

j=1 Xi , j . The space L2(X ,Σ1,µ) is a linear subspace of L2(X ,Σ2,µ).

Proof. The only part not already observed is the final claim. But a function belongs

to L2(X ,Σ1,µ) if any only if it is constant on the atoms Xi , in which case it is cer-

tainly constant on the smaller atoms Xi , j ⊆ Xi from Σ2. Thus as sets, L2(X ,Σ1,µ) ⊆
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L2(X ,Σ2,µ). But if f , g ∈ L2(X ,Σ1,µ) are constant on atoms Xi , then for any con-

stant c and x, y ∈ Xi ,

[ f + cg ](x) = f (x)+ cg (x) = f (y)+ cg (y) = [ f + cg ](y)

so f + cg is constant on Xi too.

Recall that if W is a subspace of a vector space V then

W ⊥ = {v : 〈w, v〉 = 0 for all w ∈W }

is called the orthogonal complement of W and each vector v ∈ V can be written

uniquely as

v = projW (v)+ (w −projW (v))

where projW (v) ∈ W is the orthogonal projection of v onto W and w −projW (v) ∈
W ⊥.

Definition 5.8: Conditional expectation

If we set V = L2(X ,Σ2,µ) and W = L2(X ,Σ1,µ) where Σ1 ⊆ Σ2 are σ-algebras

on X then theΣ1-measurable function projW f is now denoted by E( f |Σ1) and

is called the conditional expectation of f given Σ1.

Lemma 5.8

Let f ∈ L2(X ,Σ2,µ) and supposeΣ1 ⊆Σ2 areσ-algebras on X . Then for A ∈Σ1,

E( f |Σ1) has the property that∫
A
E( f |Σ1)dµ=

∫
A

f dµ.

In particular, the value of E( f |Σ1) on any atom Xi is

[E( f |Σ1)](Xi ) = 1

µ(Xi )

∫
Xi

f dµ.

Proof. We define g ∈ L2(X ,Σ1,µ) by the rule

g (x) = 1

µ(Xi )

∫
Xi

f dµ

for x ∈ Xi and i = 1, . . . , N , which is then constant on atoms by definition. Then if

A = Xi1 ∪ ·· ·Xim is a union of atoms from Σ1, then g is a simple function, and by

definition,∫
A

g dµ=
m∑

k=1
g (Xik )µ(Xik ) =

m∑
k=1

1

µ(Xik )

(∫
Xik

f dµ

)
µ(Xik ) =

m∑
k=1

∫
Xik

f dµ=
∫

A
f dµ.
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So g ∈ L2(X ,Σ1,µ) has the desired property, and we need only show that g = E( f |Σ1),

which in turn will be true if 〈 f − g ,h〉 = 0 for any h ∈ L2(X ,Σ1,µ), because f =
E( f |Σ1)+ (

f −E( f |Σ1)
)

is a unique decomposition into something from L2(X ,Σ1,µ)

and its complement. It is then enough to show that 〈 f − g ,1Xi 〉 = 0 since the indi-

cator functions 1Xi span L2(X ,Σ1,µ). Now

〈 f − g ,1Xi 〉 =
∫

Xi

f − g dµ=
∫

Xi

f dµ−
∫

Xi

g dµ=
∫

Xi

f dµ−
∫

Xi

f dµ= 0

where the second-to-last equality uses that Xi ∈ Σ1 and the property we have al-

ready shown g to have.

Example. Suppose C1, . . . ,CN are {1,−1} independently at random with P(Ci = 1) =
P(Ci = −1) = 1

2 . The underlying probability space is X = {1,−1}N , Σ2 = P (X ), and

the measure of any vector is 1/2N . We think of this space as the result of betting a

dollar on a coin flip, the game being played N times. Suppose we have played the

first N −1 games, so we know the results of those flips, but the N ’th flip remains to be

determined. We might represent this as (C1, . . . ,CN−1, ?). If one were to ask us about

the results, we can tell them anything we like about the first N −1 flips, but not about

the last. This can be encoded by the σ-algebra Σ1, whose atoms have the form

{(C1, . . . ,CN−1,1), (C1, . . . ,CN−1,−1)}.

This is because, by locking the last entries 1 and −1 into a common atom, we cannot

distinguish between them, and so are uncertain as to the the final outcome. A func-

tion f ∈ L2(X ,Σ2,µ) associates a number to the result of the N games. For instance,

our winnings (or debts) are

f (C1, . . . ,CN ) =C1 + . . .+CN .

The value of E( f |Σ1) represents what we expect f to be given what we know from Σ1

(which is what we’ve learned from the first N −1 games). According to the preceding

lemma, we have

[E( f |Σ1)](C1, . . . ,CN−1, ?) = 2N−1
(

f (C1, . . . ,CN−1,1)
1

2N
+ f (C1, . . . ,CN−1,−1)

1

2N

)
= f (C1, . . . ,CN−1,1)+ f (C1, . . . ,CN−1,−1)

2

and so again, if f is our winnings, then

[E( f |Σ1)](C1, . . . ,CN−1, ?) = (C1 +·· ·+CN−1 +1)+ (C1 +·· ·+CN−1 −1)

2
=C1+·· ·+CN−1

is is our best guess at our winnings after N games given what we know for the first

N − 1 games – they don’t change. Of course, they will go up or down after the N ’th

game, but each is equally likely.
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6
FUNCTIONAL ANALYSIS

Functional analysis is linear algebra from a quantitative perspective that allows

us to extend ideas from finite dimensional spaces to infinite dimensional spaces.

There is an emphasis on approximation. We will focus primarily on finite dimen-

sional spaces, but the flavour will be very quantitative.

6.1 The spectral theorem

Let T be a linear operator on a complex inner product space V , of finite dimension.

Then we call T self-adjoint if T = T ∗.

Our goal is to prove the following.

Theorem 6.1: Spectral Theorem

Suppose T is a self-adjoint operator on V . Then T admits and orthonormal

basis of eigenvectors each with a real eigenvalue.

In the context of L2(X ,Σ,µ), we call eigenvectors eigenfunctions and we have

λ f f (x) = [TK f ](x) =
n∑

j=1
f (X j )K (Xi , X j )µ(X j ).
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Lemma 6.1

Any operator T has an eigenvector.

Proof. The characteristic polynomial det(T −λI ) is a complex polynomial in λ and

hence has a root λ ∈ C, which is to say, T −λI is not invertible. Thus there is some

vector v ∈ Ker(T −λI ) which is an eigenvector.

Theorem 6.2: Schur decomposition

If V is a complex inner product space and T is a linear operator on V , then

V admits an upper-triangular basis. That is, there is a basis {v1, . . . , vn} of V

such that

T (vk ) ∈ Span{v1, . . . , vk }.

Furthermore, this basis can be taken to be orthonormal.

Proof. We proceed by induction on n, the case n = 1 being trivial.

Let v1 be a an eigenvector for T with eigenvalue λ, normalized so that ∥v1∥ = 1,

and let E = v⊥
1 . We define T ′ : E → E by

T ′(u) = T (u)−〈T (u), v1〉v1.

Then T ′ is linear and

〈T ′(u), v1〉 = 〈T (u)−〈T (u), v1〉v1, v1〉 = 〈T (u), v1〉−〈T (u), v1〉∥v1∥2 = 0

so that T ′ really does map E to E . Moreover E has dimension n−1 so by induction,

we know that there is a basis {v2, . . . , vn} ⊆ V such that T ′(vk ) ⊆ Span{v2, . . . , vk }. It

follows that

T (vk ) = 〈T (vk ), v1〉v1 +T ′(vi ) ⊆ Span{v1, v2, . . . , vk }.

For the claim of orthonormality, recall that the Gram-Schmidt process takes the

basis {v1, . . . , vn} and iteratively replaces vk with uk defined by the rule

u1 = v1

and

uk+1 = vk+1 −
k∑

j=1

〈vk+1,u j 〉
〈u j ,u j 〉

u j

so that Span{u1, . . . ,uk } = Span{v1, . . . , vk }. The resulting vectors uk are orthogonal

and still upper-triangular, by induction:

T (uk ) = T (vk )−
k−1∑
j=1

〈vk ,u j 〉
〈u j ,u j 〉

T (u j ) ∈ Span{v1, . . . , vk }+Span{u1, . . . ,uk−1} = Span{u1, . . . ,uk }.

Finally, we renormalize to make everything orthonormal.
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Proof of the Spectral Theorem. Suppose T is self-adjoint, and let {v1, . . . , vn} be the

basis from the Schur decomposition. We can further assume that these vectors are

orthonormal. We show by induction that vk is an eigenvector, the case k = 1 being

immediate. For the induction step

T (vk+1) =
k+1∑
j=1

〈T (vk+1), v j 〉v j =
k+1∑
j=1

〈vk+1,T (v j )〉v j =
k∑

j=1
λ j 〈vk+1, v j 〉v j+〈vk+1,T (vk+1)〉vk+1

and the sum vanishes by orthogonality. Thus

T (vk+1) = 〈vk+1,T (vk+1)〉vk+1

which is to say that vk+1 is an eigenvector too.

Finally if v is an eigenvector (normalized to have length 1)

λ= 〈λv, v〉 = 〈T v, v〉 = 〈v,T v〉 = 〈v,λv〉 =λ,

so that λ ∈R.

6.2 Operator norms

Let V and W be normed vector spaces with respective norms ∥·∥V and ∥·∥W . Then,

for a linear map T : V →W we define ∥T ∥ = supv ̸=0
∥T (v)∥W
∥v∥V

. We say T is bounded if

this number is finite.

Lemma 6.2

The linear map T : V →W is continuous if and only if it is bounded.

Proof. Suppose T is bounded. Then if v1 ̸= v2,

∥T (v1)−T (v2)∥W = ∥T (v1 − v2)∥W ≤ ∥T (v1 − v2)∥W

∥v1 − v2∥V
∥v1 − v2∥V ≤ ∥T ∥∥v1 − v2∥V

and so if ε > 0 we set δ = ε/∥T ∥ to establish continuity. Conversely, if T is con-

tinuous, then continuity at 0V tells us that there is a δ such that if ∥v∥V ≤ δ then

∥T (v)∥W ≤ 1. Hence for any vector v

δ

∥v∥V
∥T (v)∥W =

∥∥∥∥T

(
δ

∥v∥V
v

)∥∥∥∥
W

≤ 1

so that

∥T ∥ ≤ 1

δ
.

91



Eigenvalues are particularly helpful with understanding ∥T ∥ when working with

the L2 norm.

Lemma 6.3

Suppose T : V →V is a self-adjoint linear operator with an orthonormal basis

{v1, . . . , vn} of eigenvectors, say T (vi ) =λi vi . Then ∥T ∥ = maxi |λi |

Proof. We have

T (v) = T

(
n∑

i=1
〈v, vi 〉vi

)
=

n∑
i=1

〈v, vi 〉λi vi

so

∥T (v)∥L2 =
(

n∑
i=1

|λi |2|〈v, vi 〉|2
)1/2

≤ max
i

|λi |
(

n∑
i=1

|〈v, vi 〉|2
)1/2

= max
i

|λi |∥v∥L2

and we note that equality holds if v = v j where |λ j | = max |λi |.
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7
APPLICATIONS

7.1 The expander mixing lemma

Let G be a graph with vertex-set V and edge-set E . The adjacency operator of G

is self-adjoint and so has an orthonormal basis of eigenfunctions fλ : V → C with

real eigenvalues λ. Because there are |V | = dimL2(V ,P (V ),1/|V |) such functions,

we can order the eigenvalues as λ|V | ≤ ·· · ≤ λ1. Recall that the degree function,

deg : V →Z is defined as

deg(v) = |{u ∈V : {u, v} ∈ E }|.

We say G is d-regular if deg(v) = d for all v ∈V .

Lemma 7.1

If G is a d-regular graph then 1V is an eigenfunction for the adjacency opera-

tor A with eigenvalue d . All other eigenvalues λ of A satisfy |λ| ≤ d .

Proof. We have

[A1V ](v) = ∑
u:{u,v}∈E

1V (u) = d .
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On the other hand, if fλ is any other eigenfunction then

|λ fλ(v)| = |[A fλ](v)| ≤ ∑
u:{u,v}∈E

| fλ(u)| ≤ d max
u

| fλ(u)|,

so choosing v such that | fλ(v)| is as big as possible, we get

|λ fλ(v)| ≤ d | fλ(v)|.

Since fλ is an eigenfunction, it is non-zero, and so fλ(v) ̸= 0 and the proof is com-

plete.

For X ,Y ⊆V we define

E(X ,Y ) = |{{u, v} ∈ E : u ∈ X , v ∈ Y }|

to be the number of edges with one endpoint in X and the other in Y .

Theorem 7.1: Expander mixing lemma

If G is a d-regular graph and each eigenvalue λ of A, other than d , satisfies

|λ| ≤ T . Then ∣∣∣∣E(X ,Y )− d

|V | |X ||Y |
∣∣∣∣≤ T

√
|X ||Y |.

Corollary 7.1

If G is a d-regular graph and each eigenvalue λ of A, other than d , satisfies

|λ| ≤ T . If X ,Y ⊆ V are such that d
|V | |X ||Y | > T

p|X ||Y | then there is an edge

from X to Y . In particular, if d >p
T |V | then every v ∈V belongs to a triangle.

Proof. By the expander mixing lemma

E(X ,Y ) ≥ d

|V | |X ||Y |−T
√
|X ||Y | > 0.

Thus there is an edge from X to Y . For any vertex v , let N (v) denote the set of the d

neighbours of v in G . Taking X = Y = N (v) we get

E(N (v), N (v)) ≥ d 3

|V | −T d = d

(
d 2

|V | −T

)
> 0

so there is an edge between some x, y ∈ N (v). But then {v, x}, {x, y}, {y, v} makes a

triangle.

Proof of the Expander Mixing Lemma. Let X and Y be the sets in question. Then

E(X ,Y ) = ∑
{u,v}∈E

1X (u)1Y (v) = ∑
v∈V

( ∑
u∈V :{u,v}∈E

1X (u)

)
1Y (v) = |V | · 〈A1X ,1Y 〉.
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Now we estimate the inner product by expanding A1X and 1Y according to the basis

of eigenfunctions fλ of A. Recall that one such eigenfunction is 1V and its eigen-

value is d . So, since our eigenfunctions are orthonormal,

1Y =∑
λ

〈1Y , fλ〉 fλ = 〈1Y ,1V 〉1V + ∑
λ̸=d

〈1Y , fλ〉 fλ,

where in the last step we merely pulled out the term corresponding to λ= d . Now

〈1Y ,1V 〉 = 1

|V |
∑
v

1Y (v)1V (v) = |Y |
|V | .

Thus we have

1Y = |Y |
|V |1V + ∑

λ̸=d
〈1Y , fλ〉 fλ.

Now we apply the same procedure to A1X :

A1X =∑
λ

〈A1X , fλ〉 fλ =
∑
λ

〈1X , A fλ〉 fλ =
∑
λ

〈1X ,λ fλ〉 fλ =
∑
λ

λ〈1X , fλ〉 fλ,

using self-adjointness and the fact that A fλ = λ fλ. Again we extract the contribu-

tion from λ= d (which comes with a factor d this time), to get

A1X = d |X |
|V | 1V + ∑

λ̸=d
λ〈1X , fλ〉 fλ.

At this point we can take inner products and use orthonormality again to get

〈A1X ,1Y 〉 = d |X ||Y |
|V |2 + ∑

λ̸=d
λ〈1X , fλ〉〈1Y , fλ〉.

Thus∣∣∣∣E(X ,Y )− d |X ||Y |
|V |

∣∣∣∣= ∣∣∣∣|V |〈A1X ,1Y 〉− d |X ||Y |
|V |

∣∣∣∣≤ |V |
∣∣∣∣∣ ∑
λ̸=d

λ〈1X , fλ〉〈1Y , fλ〉
∣∣∣∣∣

and by the triangle inequality, the right hand side is at most

|V | ∑
λ̸=d

|λ||〈1X , fλ〉||〈1Y , fλ〉|.

Each instance of |λ| is, by our hypothesis, at most T . So using this, and the Cauchy-

Schwarz inequality,

|V | ∑
λ̸=d

|λ||〈1X , fλ〉||〈1Y , fλ〉| ≤ T |V |∑
λ

|〈1X , fλ〉||〈1Y , fλ〉|

≤ T |V |
(∑
λ

|〈1X , fλ〉|2
)1/2 (∑

λ

|〈1Y , fλ〉|2
)1/2

.
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Since the L2-norm of the coefficients of a function f expanded in terms of any or-

thonormal basis is always the same (Parseval’s identity) we have∑
λ

|〈1X , fλ〉|2 =
∑

v∈V
|〈1X , |V |1/21{v}〉|2.

Here we are using that |V |1/21{v} also forms an orthonormal basis, and next we ob-

serve that

〈1X , |V |1/21{v}〉 = 1

|V |
∑

u∈V
1X (u)|V |1/21{v}(u) = 1X (v)

|V |1/2
.

From this, ∑
v∈V

|〈1X , |V |1/21{v}〉|2 =
∑

v∈V

1X (v)

|V | = |X |
|V | .

The same calculation applies with Y in place of X and the proof is complete.

7.2 Cayley graphs, Paley graphs, and sums and products

The following will work with any abelian group, but we’ll stick to Fp , the residue

classes mod p, with addition. Let S ⊆ Fp be a set with 0 ∈ S and s ∈ S =⇒ −s ∈ S.

A Cayley graph is one whose vertices are Fp and whose edges are all pairs the form

{x, x + s}.

Lemma 7.2

A Cayley graph is d-regular where d = |S|. The eigenfunctions of the ad-

jacency operator are the functions ψk defined as ψk (x) = e(kx/p) where

k ∈ {0, . . . , p −1}, and the eigenvalues are∑
s∈S

e(ks/p) = p1̂S(−k).

Proof. The edges eminating from x ∈ Fp all have the form {x, x + s}, and there is

exactly one such edge for s ∈ S. For the second claim,

[Aψk ](x) = ∑
{x,y}∈E

ψk (y) = ∑
s∈S

ψk (x + s) =ψk (x)
∑
s∈S

ψk (s).

There are p = dimL2(Fp ,P (Fp ),1/p) functions pf the formψk , and each is an eigen-

function, so we have accounted for all of them.

If p = 1(mod 4) then the set of quadratic residues S = {x2 : x ∈ Fp , x ̸= 0} is a sym-

metric set of size (p − 1)/2. Forming the Cayley graph with this particular set S

makes a graph with a special name: the Paley graph mod p. The eigenvalues of this

graph are of the form ∑
s∈S

e(ks/p) = 1

2

( ∑
x∈Fp

e(kx2/p)−1

)
.
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The above indentity is because we need to extract x = 0 from the sum on the right

(0 ̸∈ S) and every square s ∈ S gets counted twice – as x2 and (−x)2.

Theorem 7.2: Gauss’ sum

For k ∈ Fp with k ̸= 0, we have∣∣∣∣∣ ∑
x∈Fp

e(kx2/p)

∣∣∣∣∣=p
p.

As a consequence, the eigenvalues of the Payley graph, other than (p − 1)/2, all

have size at most ∣∣∣∣∣1

2

( ∑
x∈Fp

e(kx2/p)−1

)∣∣∣∣∣≤ 1

2
(
p

p +1) ≤p
p.

Corollary 7.2: Expander mixing lemma for the Paley graph

If X ,Y ⊆ Fp and

E(X ,Y ) = |{{x, y} : x ∈ X , y ∈ Y x − y ∈ S}|,

then ∣∣∣∣E(X ,Y )− |X ||Y |
2

∣∣∣∣≤ 2
√

p|X ||Y |.

In particular, if |X ||Y | > 16p then there is an edge from X to Y .

Proof. We can apply the expander mixing lemma with d = p−1
2 and T =p

p. We get∣∣∣∣∣E(X ,Y )−|X ||Y |
p−1

2

p

∣∣∣∣∣≤√
p|X ||Y |.

To complete the proof we need only note that∣∣∣∣E(X ,Y )− |X ||Y |
2

∣∣∣∣≤
∣∣∣∣∣E(X ,Y )−|X ||Y |

p−1
2

p

∣∣∣∣∣+ |X ||Y |
2p

.

But since |X | ≤ p and |Y | ≤ p,

|X ||Y |
2p

≤√
p|X ||Y |.

For the final conclusion, we observe that

E(X ,Y ) ≥ |X ||Y |
2

−2
√

p|X ||Y | =
√
|X ||Y |

(p|X ||Y |
2

−2
p

p

)
and the right hand side is positive since |X ||Y | > 16p.
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Theorem 7.3

Let A ⊆ Fp be a set of size at least 10
p

p. Then there are two elements x, y ∈ Fp

such that x + y ∈ A and x y ∈ A.

Proof. For a,b ∈ A, we consider the polynomial t 2 − at +b. If this polynomial can

be factored, we get

t 2 −at +b = (t −x)(t − y) = t 2 − (x + y)t + (x y)

which, upon comparing coefficients, gives a = x + y and b = x y . So to prove the

theorem, it is enough to show that for some a,b ∈ A, the polynomial t 2 − at + b

factors. By the quadratic formula, this amounts to showing that the discriminant

a2 −4b is a square. In other words, we want to show that there is an edge between

X = {a2 : a ∈ A} and Y = {4b : b ∈ A} in the Paley graph. Now |X | ≥ |A|/2 since

squaring is at most 2-to-1, and |Y | = |A| since the map b 7→ 4b is invertible. So

|X ||Y | ≥ |A|2/4 ≥ 25p which is enough to guarantee an edge in the Paley graph.

7.3 Roth’s theorem

Recall that an arithmetic progression of length k is a sequence of k terms having the

form {a, a +d , . . . , a + (k −1)d}. In 1953, Klaus Roth proved the following theorem.

Theorem 7.4: Roth

Let r3(N ) denote the largest cardinality of a set A ⊆ {1, . . . , N } such that A con-

tains no three distinct elements forming an arithmetic progression. Then

r3(N )/N → 0 as N →∞.

In other words, given a proportion δ> 0, and provided N is sufficiently large, then

any subset A ⊆ {1, . . . , N } containing at least δN elements automatically contains

three numbers in (non-trivial) arithmetic progression. Here non-trivial means we

do not count the arithmetic progression (a, a, a). In this section, we present a proof

of Roth’s theorem due to Croot and Sisask. Let’s write, for a set A ⊆Z, T3(A) for the

number of 3-term progressions in A.

We begin with a lemma, more or less due to Varnavides, which states that once

one has passed the threshold r3(N ) needed to guarantee a 3-term progression, then

there are in fact many – i.e. T3(A) is big.
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Lemma 7.3: Varnavides

Let M and N be positive integers with 1 ≤ M ≤ N . Then for A ⊆ {1, . . . , N } we

have

T3(A) ≥ N 2

M 4

( |A|
N

− r3(M)+2

M

)
.

Let’s digest this a bit. Suppose we take N larger than M 4. Then the N 2/M 4 factor

is at least N , and so we will deduce a positive lower bound for T3(A) provided |A|/N

is larger than r3(M)+1
M , which is roughly the density needed for a set B ⊆ {1, . . . , M } to

contain a 3-term progression. So if the density of A exceeds the threshold density

that works for M , then we’ll have lots of 3-term progressions.

Proof. For a positive integer k, let AP(N , M ,k) denote the set of all M-term arith-

metic progressions in {1, . . . , N } with step at most k. In other words, AP(N , M ,k)

denotes the number of sequences of the form

a, a +d , . . . , a + (M −1)d

where 1 ≤ d ≤ k and 1 ≤ a ≤ a+(M −1)d ≤ N . We warm up by counting the number

of progressions with a fixed step d . This amounts to choosing the starting point

a, since once a has been decided, and since d is fixed, we have no other choices to

make. The only thing we need to bear in mind when choosing a is that we complete

the full M term progression before hitting N , which is to say a + (M −1)d ≤ N , or

1 ≤ a ≤ N − M −1

d
.

Meanwhile any a in this range will do, so we have about N −(M −1)/d progressions

of step d .

Next, given a fixed 3-term progression b,b+e,b+2e, how many progressions from

AP(N , M ,k) can contain {b,b +e,b +2e}? Suppose that

{b,b +e,b +2e} ⊆ {a, a +d , . . . , a + (M −1)d}.

Then d divides e, since

e = (b +e)−b = (a +md)− (a +m′d) = d(m −m′)

for some m,m′. So write e = dd ′. At the same time

2e = (b +2e)− (b) ≤ (a + (M −1)d)−a = (M −1)d

so d ′ ≤ (M −1)/2. By the same idea, b can equal a +kd only if (M −1)d −kd ≥ 2e,

which is to say,

k ≤ M −2e/d = M −2d ′.

99



So {b,b+e,b+2e} is contained in at most M−2d ′ progressions with step d , and only

provided d divides e = dd ′ and d ′ ≤ (M −1)/2. Said differently, given d ′ ≤ (M −1)/2

there at most M −2d ′ progressions of step e/d ′ which contain {b,b+e,b+2e}. Thus

we get a total of ∑
d ′≤(M−1)/2

M −2d ′ ≤ M 2/4

progressions which contain {b,b +e,b +2e}.

The key idea is that if B ⊆ {a, a+d , . . . , a+(M −1)d} has size at least r3(M)+1 then

B has to contain a 3-term progression. So, to count 3-term progressions in A, we

consider ∑
P∈AP(N ,M ,k)

T3(P ∩ A) = ∑
b,b+e,b+2e∈A

∑
P∈AP(N ,M ,k)

1P (b)1P (b +e)1P (b +2e).

We’ve already seen that there are at most M 2/4 possible P ∈ AP(N , M ,k) which con-

tain {b,b +e,b +2e} so

∑
P∈AP(N ,M ,k)

T3(P ∩ A) ≤ M 2

4
T3(A).

On the other hand, we know that if |P ∩ A| ≥ r3(M)+1 then T3(P ∩ A) ≥ 1. So∑
P∈AP(N ,M ,k)

T3(P ∩ A) ≥ |{P ∈ AP(N , M ,k) : |A∩P | ≥ r3(M)+1}|.

It remains to understand the right hand side. Consider∑
P∈AP(N ,M ,k)

|A∩P |.

We write P = Pd if P has step P , so the above splits as∑
1≤d≤k

∑
Pd

|A∩Pd | =
∑

1≤d≤k

∑
a∈A

∑
Pd

1Pd (a).

If a ∈ A belongs to the interval I = [(M−1)k, N−(M−1)k] then a belongs to precisely

M progressions of length M and step d , since it can occur at any position in the

progression. Hence∑
1≤d≤k

∑
a∈A

∑
Pd

1Pd (a) ≥ ∑
1≤d≤k

∑
a∈A∩I

∑
Pd

1Pd (a) = kM |A∩ I |.

But

|A∩ I | ≥ |A|−2(M −1)k.

Hence ∑
P∈AP(N ,M ,k)

|A∩P | ≥ Mk(|A|−2Mk).
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We split AP(N , M ,k) into to sets, say X and Y , where X consists of those P with

|A ∩P | ≥ r3(M)+1 and Y consists of those P with |A ∩P | ≤ r3(M). What we have

already shown amounts to T3(A) ≥ |X |/M 2. Now clearly,

|Y | ≤ ∑
P∈Y

|A∩P |
r3(M)

.

Hence

M |X | ≥ ∑
P∈X

|A∩P | ≥ ∑
P∈AP(N ,M ,k)

|A∩P |− ∑
P∈Y

|A∩P | ≥ Mk(|A|−2Mk)−|Y |r3(M),

On the other hand |Y | ≤ |AP(N , M ,k)| ≤ N k, so

M |X | ≥ Mk(|A|−2Mk)− (N k)r3(M)

and if we take k = ⌊N /M 2⌋, this gives

M |X | ≥ N

M
|A|−2

N 2

M 2
− N 2

M 2
r3(M) = N 2M 3

( |A|
N M 4

− r3(M)+1

M 5

)

It will be convenient to work modulo a prime p, so for the moment let’s suppose

we are trying to count 3-term progressions in a set A ⊆ Fp . To begin, suppose f :

Fp →C is a function. We define

Λ( f ) = 1

p2

∑
a,d∈Fp

f (a) f (a +d) f (a +2d).

Then, if A ⊆ Fp , we have

Λ(1A) = |{(a,d) : a, a +d , a +2d ∈ A}|,

the number of 3-term progressions in A. Now, it’s generally hard to understand

Λ( f ) if f is mysterious. So we next use the Fourier expansion of f to give a new

expression forΛ.

Lemma 7.4

We have

Λ( f ) = ∑
x∈Fp

f̂ (x) f̂ (x) f̂ (−2x).

Proof. The Fourier expansion of f is

f (t ) = ∑
x∈Fp

f̂ (x)e(xt/p).
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Plugging this into the definition ofΛ( f ), we get

Λ( f ) = 1

p2

∑
a,d∈Fp

∑
x1,x2,x3

f̂ (x1) f̂ (x2) f̂ (x3)e(x1a/p)e(x2(a +d)/p)e(x3(a +2d)/p).

We bring the sums over a and d inside to get

Λ( f ) = ∑
x1,x2,x3

f̂ (x1) f̂ (x2) f̂ (x3)
1

p2

∑
a,d∈Fp

e(x1a/p)e(x2(a +d)/p)e(x3(a +2d)/p).

Now we rewrite

e(x1a/p)e(x2(a +d)/p)e(x3(a +2d)/p) = e(a(x1 +x2 +x3)/p)e(d(x2 +2x3)/p)

and when we plug this in and sum over a and d , the orthogonality relations tell us

that the sums vanish unless x1 + x2 + x3 = 0 and x2 +2x3 = 0, which is a system of

equations whose only solutions are (x1, x2, x3) = (x,−2x, x). This proves the lemma.

Theorem 7.5: Dirichlet Approximation

Let R be a subset of Fp of size at most log2 p. Denote by Ik the interval [−k,k]

modulo p, that is Ik = {−k,−k+1, . . . ,k−1,k}. Then there is a d ∈ Fp with d ̸= 0

and such that d ·R ⊆ Ik for some k ≤ 4p1−1/R .

Proof. Let k be fixed for the time being. Then Fp can be covered by at most p/k +1

translates of {1, . . . ,k}. Hence, if n = |R|, then Fn
p can be covered by at most (p/k+1)n

translates of {1, . . . ,k}n . Write R = {r1, . . . ,rn} and consider the points (tr1, . . . , trn)

with t ∈ Fp . There are p such points, and so if (p/k +1)n < p, then one translate of

x+{1, . . . ,k}n contains two of these points, say (tr1, . . . , trn) and (t ′r1, . . . , t ′rn). Then,

the difference

((t − t ′)r1, . . . , (t − t ′)rn) ∈ I n
k .

So we set d = t − t ′ and since t ̸= t ′ we have d ̸= 0. Now we just need to choose k,

and we want to do that with k as small as possible. The sole condition we need to

satisfy is (p/k +1)n < p which rearranges as

p/k +1 < p1/n ⇐⇒ p +k < kp1/n ⇐⇒ p < k(p1/n −1).

Since p1/n −1 > p1/n/2 so long as p > 2n , which we have assumed, our constraint is

satisfied provided k ≥ 2p1−1/n , so any integer k in the range 2p1−1/n ≤ k ≤ 4p1−1/n

will do.

The reason for using an approximation theorem as above is that the fractions

dr /p will be very close to an integer when r ∈ R. Indeed, dr = qr p + zr by long

division, where −k ≤ zr ≤ k. It follows that e(dr /p) = e(zr /p).
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Lemma 7.5

Let 0 ≤ θ ≤ 1 and write ∥θ∥ = min{θ,1−θ}. Then

|e(θ)−1| ≤ 2π∥θ∥.

Proof. The quantity 2π∥θ∥ is the length of the arc on the unit circle in the complex

plane which joins 1 to e(θ). This is longer than the straight line which joins them,

which is |1−e(θ)|.

Corollary 7.3

Let z ∈ Fp belong to the interval Ik = {−k, . . . ,k} modulo p. Then |e(z/p)−1| ≤
2πk

p .

Proof. The fraction θ = z/p has ∥θ∥ ≤ k/p so the above lemma finishes the proof.

Lemma 7.6

Let f : Fp →C be a function such that maxr | f̂ (r )| ≤ 1. Suppose

R = {r : | f̂ (r )| ≥ t }

and d ∈ Fp is non-zero and such that d ·R ⊆ Ik = {−k, . . . ,k}. Then

| f̂ (r )||1−e(xr /p)| ≤ max{t ,k/p}

for all r ∈ Fp .

Proof. If r ̸∈ R then | f̂ (r )| ≤ t by definition. Otherwise |1− e(dr /p)| ≤ k/p by the

preceding corollary and the fact that | f̂ (r )| ≤ 1.

We will combine this lemma with the expression for Λ(1A) from Lemma 7.3 to

show that one can replace 1A with a slightly smoother function g which has much

larger support larger than A.

Proposition 7.1

Suppose A ⊆ Fp has no non-trivial three-term progressions. Then there is a

function g : Fp → {0,1/3,2/3} with |Λ(1A)−Λ(g )| ≤ 105(loglog p)1/2/(log p)1/2.

Moreover, supp(g ) ⊆ A∪ (A−d)∪ (A−2d) for some d with |d | ≤ 4p/log p.
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Proof. Let

R = {r : |1̂A(r )| ≥ (
2loglog p/log p

)1/2}.

From Chebyshev’s inequality,

|R| ≤ log p

2loglog p

∑
r∈R

|1̂A(r )|2 ≤ log p

2loglog p

∑
r∈Fp

|1̂A(r )|2

and by Parseval’s identity, the right hand side is exactly

log p

2loglog p

∑
r∈Fp

|1̂A(r )|2 = log p

2loglog p

1

p

∑
x∈Fp

|1A(x)|2 ≤ log p

2loglog p
.

By Dirichlet approximation, we can find a non-zero d such that d ·(R∪{1}) ⊆ {−k, . . . ,k}

with k ≤ 4 p
log p . Now let

h = p

3

(
10,d ,2d

)
and let

g (t ) = 1A ∗h(t ) = 1

3
(1A(t )+1A(t +d)+1A(t +2d)) .

The second equality is pretty easily verified by expanding out the definition of con-

volution. Note the claim on the support of g is immediate from this and the fact

that d = d ·1 ∈ Ik . Finally, since A has no three-term progressions, g can only take

the values 0,1/3 and 2/3. Now since ĝ (x) = 1̂A(x)ĥ(x) we have

Λ(1A)−Λ(g ) = ∑
x∈Fp

1̂A(x)21̂A(−2x)(1− ĥ(x)2ĥ(−2x)).

From the triangle inequality, we have

|1− ĥ(x)2ĥ(−2x)| ≤ |1− ĥ(x)|+ |ĥ(x)||1− ĥ(x)|+ |ĥ(x)||1− ĥ(−2x)|.

But

ĥ(x) = 1

3
(1+e(d x/p)+e(2d x/p))

so |ĥ(x)| ≤ 1,

|1− ĥ(x)| ≤ 1

3
|1−e(−d x/p)|+ 1

3
|1−e(−2d x/p)|,

and similarly

|1− ĥ(−2x)| ≤ 1

3
|1−e(2d x/p)|+ 1

3
|1−e(4d x/p)|,

By the preceding corollary, since ±dr,±2dr,±4dr ∈ {−4k, . . . ,4k} we have

|1̂A(x)||1− ĥ(x)2ĥ(−2x)| ≤ 1000max

{
(loglog p)1/2

(log p)1/2
,

16

log p

}
≤ 10000(loglog p)1/2

(log p)1/2
.

Putting all of this together,

|Λ(1A)−Λ(g )| ≤ 10000(loglog p)1/2

(log p)1/2

∑
x
|1̂A(x)||1̂A(−2x)| ≤ 10000(loglog p)1/2

(log p)1/2

∑
x
|1̂A(x)|2.
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In the last inequality we used that |a||b| ≤ (|a|2+|b|2)/2 and that as x varies over Fp ,

so does −2x. Finally, by Parseval,∑
x
|1̂A(x)|2 ≤ |A|

p
≤ 1.

If the function g above where an indicator function, g = 1B , then Λ(1B ) would

be close to λ(1A), and so B would have about as many three term progressions as

A. If B were larger than A this would create a lot of tension, since if A is maximal

without three-term progressions, then B would have to have some. However, g is

not an indicator function, but we will be able to relate it to one.

Lemma 7.7

Let A and g be as in Lemma 7.3. Then the set T = supp(g ) has size at least

3|A|/2 andΛ(1T ) ≤ 27Λ(g ).

Proof. We have

|T | ≥ ∑
x∈T

3

2
g (x) = 1

2

∑
x

1A(x)+1A(x +d)+1A(x +2d) = 3|A|
2

.

On the other hand 1T (x) ≤ 3g (x), and so

Λ(1T ) = 1

p2

∑
x,d

1T (x)1T (x +d)1T (x +2d) ≤ 27Λ(g ).

Let’s take stock of what we have done. We started with A ⊆ [N ] which has no three-

term progressions. We reduced the problem to counting three-term progressions

in Fp where 2N < p < 4N , and found a new set T which is larger than A by half, and

has relatively few three-term progressions. We summarize this below.

Corollary 7.4

Let A be a subset of [N ] containing no non-trivial three-term progres-

sions. Then there is a subset T ′ ⊆ [N ] with |T ′| ≥ 4/3|A| such that T ′ con-

tains at most 108N 2(loglog N /log N )1/2 three-term progressions, or else |A| ≤
1000N /log N .

Proof. The set T = supp(g ) is contained in

A∪ A−d ∪ A−2d ⊆ [−8log p/loglog p, N +8log p/loglog p]

⊆ [−16log N /loglog N , N +16log N /loglog N ]
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where we recall that our choice of p satisfied p < 4N . Thus

|T ∩ [1, N ]| ≥ |T |−34log N /loglog N .

Since |T | ≥ 3/2|A|,
|T ∩ [1, . . . , N ]| ≥ 3|A|/2−32log N /loglog N ≥ 4|A|/3

unless |A| ≤ 1000log N /loglog N . We just need to estimate the number of three-

term progressions in T ′. It is trivially at most

N 2Λ(1T ) ≤ 27N 2Λ(g )

and from Proposition 7.3,

Λ(g ) ≤Λ(1A)+105(loglog p)1/2/(log p)1/2 ≤ |A|
N 2

+106(loglog N )1/2/(log N )1/2,

the second inequality being because A has no three-term progressions so Λ(1A)

includes only the |A| trivial ones. But |A|/N 2 ≤ 1/N is negligible, so in fact we have

N 2Λ(1T ) ≤ 108N 2(loglog N )1/2/(log N )1/2.

We can now conclude the proof of Roth’s theorem. Suppose that N is given and

A ⊆ [N ] is a set of size |A| = r3(N ) which is free of three-term progressions. Then

either |A|
N

= r3(N )

N
≤ 1000

log N
,

and we’re done, or else Corollary 7.3 tells us there is a set T ′ ⊆ [N ] with

T3(T ′) ≤ 108N 2
(

loglog N

log N

)1/2

and of size at least 4/3r3(N ). From Varnavides’ Lemma, we get

T3(T ′) ≥ N 2

M 4

( |T ′|
N

− r3(M)+2

M

)
and so comparing the two,

108M 4
(

loglog N

log N

)1/2

≥ 4

3

r3(N )

N
− r3(M)+2

M
.

Now we choose N and M so that M = (log N /loglog N )1/16 and the left hand side

becomes 108(loglog N )1/4/(log N )1/4 and hence

r3(N )

N
≤ 109 (loglog N )1/4

(log N )1/4
+ 3

4

r3(M)

M
.

Again, if the first term dominates, we’re done. Otherwise, we can just write

r3(N )

N
≤ 99

100

r3(M)

M
.

But this tells us that when we increase from M to N , the ratio r3(x)/x drops by at

least 1/100. From this, r3(N )/N → 0 as N →∞.
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