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1
MOTIVATION

1.1 What is analysis and what are the reals?

Analysis, broadly speaking, is the branch of math that favours estimates rather than

identities. Identities are algebraic. Estimates involve the use of inequalities.

The real numbers are a bit harder to define. We’re all pretty comfortable (hope-

fully) with the rational numbers

Q=
{a

b
: a ∈Z,b > 0

}
consisting of ratios of integers. You might have seen these with the condition b ̸= 0

instead of b > 0, but writing b > 0 doesn’t really change anything, since we can

always replace the numerator with −a if need be. The rational numbers have a lot

going for them: we can perform arithmetic – addition, multiplication, subtraction

and division – and we can compare them – we can tell if one rational number is

bigger than another. The problem with the rational numbers is that they have some

holes (actually, a lot of holes). What this means is that there are bits missing from

the “real line”.

The real line is a tempting way to think of the real numbers. It is an infinitely long

ruler, and a real number would then be a measurement taken on this rule. But if we

only knew of rational numbers, we wouldn’t be able to measure the hypotenuse of
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the right triangle with sidelengths 1. We know from the Pythagorean theorem that

the hypotenuse should be
p

12 +12 =p
2.

Theorem 1.1: An irrational number

There is no rational number x such that x2 = 2.

Proof. If there were, say x = a/b, then we could keep dividing our factors of 2 from

a and b until one of them was no longer even. We’d have

2 = x2 = a2/b2

leading to

2b2 = a2

so that a2 has to be even, and in turn telling us that a is also even. Thus a = 2c and

a2 = 4c2 so that

2b2 = 4c2

from which we conclude

b2 = 2c2.

Now the table has turned and we conclude that b is also even, but we already made

clear that a and b should not both be even, a contradiction.

So if there is no rational number that can be used to measure our hypotenuse,

what do we do? Maybe decimals are the way to go? If you punch
p

2 into your

calculator you’ll see

p
2 = 1.41421356237309504880168872. . .

but then what do those . . . really mean? The digits can’t terminate, since only ratio-

nal numbers can have a terminating decimal expansion, and we already saw thatp
2 isn’t rational. So this expansion goes on forever, which could mean adding up

tenths and hundredths and thousandths and so on, but how do you add infinitely

many numbers? Or maybe it means that you can get very close to
p

2 if you include

enough digits. But how close is very close? All of these ideas are good ones, and our

goal is to make them precise.

Back to the algebra vs. analysis question, a distinction is the following. Algebraists

like to do algebra, so they would perhaps define 0 to be the thing that satisfies the

rule

a +0 = 0+a = a, ∀a.

This is defining the oh so important number 0 by its algebraic property: it is the

additive identity. And then one might go on to prove the following.
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Lemma 1.1

There can only be one 0.

Proof. Suppose 01 and 02 are two additive identities. Then

01 = 01 +02

since 02 is an additive identity. Meanwhile

02 = 01 +02

because 01 is an additive identity. Thus 01 = 02.

This proof is completely algebraic. An analyst, on the other hand, might interpret

0 as the only number with no length. Before getting to this, we’ll need the following

essential property: the Archimedean property states that for any number x, there

is a natural number N which is larger than x.

Lemma 1.2: The analyst’s 0

Let x be any number. Then

x = 0 ⇐⇒ |x| < 1

n
,∀n ∈N.

Proof. If x = 0 then |x| = 0 too, while 1/n is positive for each n ∈ N. Conversely,

if x ̸= 0 then |x| > 0 so 1/|x| is a well-defined number. Thus, by the Archimedean

property,
1

|x| < N

for some natural number N which rearranges to

|x| > 1

N
.

This proof is worth thinking about a bit, because it is, first of all, a fundamental

perspective of analysis, and second of all, it is a preview of the sorts of arguments

we’ll rely on.
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2
INEQUALITIES

2.1 Basic properties of inequalities

The basic inequalities we need to get underway start from the order on the natural

numbers. We enumerate

N= {1,2,3, . . .}

and then say m < n if m comes before n in this enumeration. The first important

property of this is transitivity: if m < n and l < m then l < n. Now we extend

this to integers first by declaring that 0 < n and −n < 0 for any natural number n.

By transitivity −n < m whenever m and n are natural numbers. To compare two

negative numbers, we say

−n <−m ⇐⇒ m < n

whenever m,n ∈N. So negative numbers have the “reverse" order of their positive

counterparts.

Next we want to see how these inequalities play with arithmetic. First we have

translation invariance

m ≤ n ⇐⇒ m +a ≤ n +a

whenever a ∈Z and dilation invariance

m ≤ n ⇐⇒ ma ≤ na
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whenever a ∈Z and a > 0. For negative dilation, we have

m ≤ n ⇐⇒ am > an

whenever a ∈Z and a < 0.

Dilation invariance then tells us how we should compare rationals:

a

b
< c

d
⇐⇒ ac < bd ,

and the right hand side is now just an inequality involving integers. As always, we’re

assuming that b,d > 0. Let’s take stock.

Lemma 2.1

We have the following properties for manipulation of inequalities involving

numbers.

1. Transitivity: if x < y and y < z then x < z.

2. Translation invariance: if x < y then x + z < y + z.

3. Dilation invariance: if z > 0 and x < y then xz < y z, while if z < 0 and

x < y then xz > y z.

These basic properties will serve as the building blocks for more sophisticated

inequalities.

Theorem 2.1: Inequalities with sums

Let a1, . . . , aN and b1, . . . ,bN be numbers with a j ≤ b j for each j . Then

a1 + . . .+aN ≤ b1 + . . .+bN .

Proof. This is by induction on N , and when N = 1 there is nothing to prove. Now

assume that we know the theorem holds for N −1. This means we can assert that

a1 + . . .+aN−1 ≤ b1 + . . .+bN−1.

We add aN to both sides, using translation invariance, to get

a1 + . . .+aN−1 +aN ≤ b1 + . . .+bN−1 +aN .

Now, by the hypothesis of the theorem,

aN ≤ bN
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so that adding b1 + . . .+bN−1 to either side of this inequality (by translation invari-

ance again) we get

(b1 + . . .+bN−1)+aN ≤ (b1 + . . .+bN−1)+bN .

So by transitivity,

a1 + . . .+aN−1 +aN ≤ b1 + . . .+bN .

Another important piece that factors into our inequalities is the absolute value.

Lemma 2.2

We have

|x| ≤ y ⇐⇒ −y ≤ x ≤ y.

Proof. If x ≥ 0 then

−y ≤ 0 ≤ x = |x| ≤ y

while if x ≤ 0 then

−x = |x| ≤ y

so that

−y ≤ x ≤ 0 ≤ y.

Conversely, if −y ≤ x ≤ y then either x ≥ 0 so that |x| = x ≤ y or x ≤ 0 so that y ≥
−x = |x|.

Example: Solve |x − 7| ≤ 4. This is equivalent to −4 ≤ x − 7 ≤ 4 and adding 7

throughout gives

3 ≤ x ≤ 11.

2.2 The fundamental inequalities

Probably the most important inequality in the whole course is the triangle inequal-

ity.

Theorem 2.2: Triangle Inequality

For any x and y ,

|x + y | ≤ |x|+ |y |.
Furthermore, equality holds exactly when x and y have the same sign.
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Proof. Suppose first the x and y have the same sign (or either of them is zero). If

need be, we can multiply them both by −1 to make them both non-negative, so let’s

assume that too. Then

|x + y | = x + y = |x|+ |y |.
Next, suppose that x and y have opposite signs and neither is zero. Furthermore,

assume that |y | ≤ |x| (they are just letters after all, so we can just call the one with

the larger absolute value x). Again, if we have to, we can multiply by −1 to make x

positive and y negative. So x > 0 > y and x = |x| ≥ |y | = −y . Because x ≥−y we have

x + y ≥−y + y = 0

so |x + y | = x + y , while

|x|+ |y | = x − y

and so we are left to check

x − y > x + y

which (adding −y −x to both sides) is the same as

−2y > 0

and this is true since −y > 0.

Example: We check that if |x − y | and |y − z| are at most 1 then |x − z| is at most 2.

The trick is to “add 0 creatively”. We have

|x − z| = |(x − y)+ (y − z)| ≤ |x − y |+ |y − z| ≤ 1+1 = 2.

Theorem 2.3: Reverse Triangle Inequality

For any x and y ,

|x − y | ≥ ||x|− |y ||.

Proof. By the triangle inequality,

|x| = |x − y + y | ≤ |x − y |+ |y |

so

|x|− |y | ≤ |x − y |.
Similarly

|y | = |y −x +x| ≤ |y −x|+ |x|
so

|y |− |x| ≤ |y −x| = |x − y |.
Since ||x|− |y || = |x|− |y | or |y |− |x|, and both are small than |x − y |, we’re done.
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Theorem 2.4: The generalized triangle inequality

For numbers a1, . . . , aN we have

|a1 + . . .+aN | ≤ |a1|+ . . .+|aN |.

Proof. When N = 2 this is just the regular triangle inequality. By induction, it is

enough to demonstrate how to proceed from N to N +1. We have

|(a1 + . . .+aN )+aN+1| ≤ |a1 + . . .+aN |+ |aN+1| ≤ |a1|+ . . .+|aN |+ |aN+1|

where the first inequality was the plain old triangle inequality and the second in-

equality was an application of the induction hypothesis.

Example: Let a,b ≥ 50 and |c| ≤ 25. Then |a +b + c| ≥ 75. Indeed , by the reverse

triangle inequality,

|a +b + c| ≥ ||a +b|− |c|| ≥ |a +b|− |c| ≥ 100−25 = 75.

Example: Suppose 0 ≤ a,b,c,d ≤ 1 and further that |a −b| ≤ 1/10 and |c −d | ≤
1/10. How big can ac −bd be? To answer this we need to investigate

|ac −bd |.

We somehow need to invoke what we know about a −b and c −d being small. To

that end we introduce the intermediate term bc:

|ac −bd | = |ac −bc +bc −bd |
≤ |ac −bc|+ |bc −bd |
= |c(a −b)|+ |b(c −d)|
= |c||a −b|+ |b||c −d |
≤ 1/10+1/10 = 1/5.

Theorem 2.5: The Cauchy-Schwarz inequality

Let a1, . . . , aN and b1, . . . ,bN be numbers. Then(
N∑

n=1
anbn

)2

≤
(

N∑
n=1

a2
n

)(
N∑

n=1
b2

n

)
.

Equality holds if and only if there is a constant c such that an = cbn for each

n.
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Proof. Let’s first explore the equality case. If an = cbn for each n then the left hand

side and the right hand side are both

c2
( n∑

n=1
b2

N

)2

.

Now, for the rest of the proof, consider the quadratic polynomial (in x) given by

f (x) =
N∑

n=1
(an −xbn)2.

This quadratic function is non-negative because it is a sum of squares of numbers.

It can only be zero if each of those numbers is itself 0, which is to say that for some

x we have an = xbn for each n, and we already know that the Cauchy-Schwarz in-

equality is an equality in this case. Otherwise, f (x) > 0 for each x and we can ex-

pand f to get

f (x) =
N∑

n=1
a2

n −2x
N∑

n=1
anbn +x2

N∑
n=1

b2
n .

Now this is a quadratic function in x which is always positive, and so has no roots.

This means we cannot solve the quadratic equation, so it must be that the discrim-

inant B 2 −4AC is negative. In our case

A =
N∑

n=1
b2

n , B =−2
N∑

n=1
anbn , C =

N∑
n=1

a2
n

and so B 2 −4AC < 0 tells us that

4

(
N∑

n=1
anbn

)
< 4

(
N∑

n=1
b2

n

)(
N∑

n=1
a2

n

)

which gives us the strict Cauchy-Schwarz inequality.

Example: Suppose a1, . . . , aN are numbers which add to 1. Then

N∑
n=1

a2
n

n
≥ 2

N (N +1)
.

This is an application of the Cauchy-Schwarz inequality, but seeing it might take

some practice. There are no bn ’s right off the bat, so we get to choose them, and

then adjust the an ’s accordingly. In other words, we won’t just blindly apply Cauchy-

Schwarz, but instead we’ll do a bit of setup first. We start with

1 =
N∑

n=1
an

which is given. We need a 1/n factor, but when we apply Cauchy-Schwarz, we end

up squaring the terms, so instead we introduce a 1/
p

n factor. However, we can’t
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just put this factor in for free, we also need to balance the books, so we re-write this

as

1 =
N∑

n=1
an =

N∑
n=1

anp
n

p
n.

Thus

1 = 12 =
(

N∑
n=1

anp
n

p
n

)2

≤
(

N∑
n=1

a2
n

n

)(
N∑

n=1
n

)
.

The second sum on the right is

N∑
n=1

n = N (N +1)

2

and if we divide through we get the conclusion we wanted.

The friendship paradox states that in most populations, the average person is

less popular than their average friend. In fact the only situation in which this is not

the case is when every person in said population has exactly the same number of

friends – no one is more or less popular than anyone else.

To establish the friendship paradox, we need a bit of notation. Let P = {p1, . . . , pn}

is a population of n people. We write

pi ∼ p j

is pi and p j are friends and we write d(pi ) for the popularity of person i , that is,

the number of friends of person i . Let E denote the total number of relationships,

which is to say, the number of pairs {pi , p j } with pi ∼ p j . Then

n∑
i=1

d(pi ) = 2E .

This is because if pi ∼ p j is one of the E relationships, then both d(pi ) and d(p j )

count it. So the average person has

1

n

n∑
i=1

d(pi ) = 2E

n

friends. Now how many friends might we expect the average friend of pi to have?

Well, if pi has an average number of friends, then their average friend has

n

2E

∑
p j∼pi

d(p j )

friends. Thus the average pi has

1

n

n∑
i=1

n

2E

∑
p j∼pi

d(p j ) = 1

2E

n∑
i=1

∑
p j∼pi

d(p j )
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friends. But if we switch the order of the sums, we get

1

2E

n∑
j=1

d(p j )
∑

pi∼p j

1 = 1

2E

n∑
j=1

d(p j )2.

So the claim of the friendship paradox is that the average person, whose popularity

is 2E/n is less popular than their average friend, whose popularity is

1

2E

n∑
j=1

d(p j )2.

By Cauchy-Schwarz

(
2E

n

)2

= 1

n2

(
n∑

i=1
1 ·d(pi )

)2

≤ 1

n2

(
n∑

i=1
12

)(
n∑

i=1
d(pi )2

)
= 1

n

(
n∑

i=1
d(pi )2

)

and this rearranges to
2E

n
≤ 1

2E

n∑
i=1

d(pi )2.

Equality can only hold if it holds in the Cauchy-Schwarz inequality. That happens

when the two sequences, all 1’s (so constant) and d(pi ), are proportional. This can

only happen if d(pi ) is constant, which means everyone has an equal number of

friends.
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3
REAL NUMBERS

3.1 Why real numbers?

A good way to motivate what we need from the real numbers is to reflect on what

that rational numbers – something we can already get our hands on – already have,

and what they are missing.

The first important property of the rationals is that they have all the necessary

ingredients needed to perform arithmetic. The rationals form what is called a field,

meaning they satisfy the following axioms.

Name Formula

associativity: (a +b)+ c = a + (b + c) (ab)c = a(bc)

commutativity: a +b = b +a ab = ba

distributivity: a(b + c) = ab +ac (a +b)c = ac +bc

identities: a +0 = a = 0+a a ·1 = a = 1 ·a

inverses: a + (−a) = 0 = (−a)+a aa−1 = 1 = a−1a if a ̸= 0

Table 1: The field axioms
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So we would like the reals to also satisfy these axioms. The rationals are ordered,

meaning we can compare any two rational numbers and decide which of the two

is larger. This is useful for measuring things, so we’d like the reals to be ordered as

well.

It turns out that
p

2 is not rational (we’ve proved this) and π is not rational either

(this is harder to prove!). So certain equations like

x2 −2 = 0

and
sidelength of a square of perimeter 1

radius of a circle of circumference 1
= x

cannot be solved. Well neither can the equation x2 +1 = 0, and the reals won’t help

with this. But there is a difference! We can approximate both
p

2 and π be rational

numbers, we cannot approximate a solution to x2 + 1 by rational numbers. For

instance, if a1, a2, . . . were a sequence of better and better approximations to
p

2,

we’d like to imagine
p

2 as the limit of these approximations, but from the point of

view of the rational numbers, no such limit exists. The goal of the reals will be to

add these missing limits in, a process called completion.

It turns out that a good way to describe the feature which we would like the reals

to have is using upper bounds and lower bounds.

Definition 3.1: Bounded set

A set A is called bounded above if there is a number u such that

u ≥ a, for each a ∈ A.

Any number u with this property is called an upper bound for A. We say A is

bounded below if there is a number l with

l ≤ a, for each a ∈ A.

Any number l with this property is called a lower bound for A. The set A is

said to be bounded if it is both bounded above and bounded below.

Example: The set

A = {a/b ∈Q : a2/b2 ≤ 2}

is a set with upper bound 2. Indeed, if a/b ∈ A then

22 > 2 ≥ a2/b2

so 2 > a/b. We could just as well check that 1.5 is also an upper bound.
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In the previous example, the most efficient upper bound we could find, if we new

about numbers outside of Q, would be
p

2 – it is an upper bound and we’ll see that

there is no number smaller that is still an upper bound. This turns out to be an

important property.

Definition 3.2: Supremum and infimum

Let A be a set of numbers. A number u is called the supremum of A if it is an

upper bound for A and if for any ε > 0, u −ε is not an upper bound for A. A

number l is called the infimum of A if it is a lower bound for A and if for any

ε> 0, l +ε is not a lower bound for A.

3.2 Defining the reals and using completeness

We can takeR, the set of real numbers, to be a field containingQ, which is ordered in

a manner consistent with the ordering of Q, and with the completeness property:

if A is any set which is bounded above, A has a supremum. This raises the question

of whether such a field exists, but for now we just take it on faith. We now explore

what we gain by using completeness by calculating suprema of various sets.

Example: If A is a finite, non-empty set of real numbers, then sup A = max A. By

finiteness, we can just enumerate A as A = {a1, . . . , aN } in order, so that a1 < . . . < aN .

Then aN = max A. First, aN is upper bound since it is the largest element of A. If

ε> 0 the aN −ε< aN so aN −ε is no longer an upper bound.

Example: If A is a the empty set, then sup A =−∞. To see this, notice that for any

number r , r ≥ a for every a ∈ A, vacuously. This is true for every number r , and the

smallest possible r would be −∞.

The next example takes a bit of preparation, because we need to establish the

following lemma.

Lemma 3.1: Denseness ofQ in R

If x is an real number then for any ε> 0, there are rational numbers a/b and

c/d with

a/b −ε≤ x ≤ a/b, and ,c/d ≤ x ≤ c/d +ε.

Proof. Let ε> 0 and let N > 1/ε be a natural number (using the Archimedean prin-

ciple). We can subdivide the real line into intervals I j = ( j /N , ( j +1)/N ] of length

1/N , where j ∈ Z. Let’s check this really is a partition of R. This means we need to

show that any x belongs to exactly one such interval. Well N x is also a real number,
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so let

A = { j ∈Z : j ≥ N x −1}.

Then A is a set of integers, and each integer in A is bounded below by N x −1. This

means there is a smallest integer j ∈ A. Since j ∈ A,

j ≥ N x −1 =⇒ j +1 ≥ N x

and since j −1 < j , j −1 is not in A and so

j −1 < N x −1 =⇒ j < N x

and these inequalities combine to

j < N x ≤ j +1.

Dividing by N we get
j

N
< x ≤ j +1

N
which means x ∈ I j . These intervals are disjoint, so they have to partition R. Now

since x belongs to such an interval,

j /N ≤ x ≤ j +1

N

and so
j +1

N
−ε≤ j +1

N
− 1

N
≤ x ≤ j +1

N
and

j

N
≤ x ≤ j

N
+ 1

N
≤ j

N
+ε

So a/b = ( j +1)/N and c/d = j /N are the fractions we’re looking for.

Example: If A is a the set

A = {a/b ∈Q : a2/b2 ≤ 2}

then sup A =p
2. First

p
2 is an upper bound: if a/b ∈ A then either a/b < 0 <p

2 or

else a/b > 0. But if a/b >p
2 then

a2/b2 = a/b ·a/b > a/b ·p2 >p
2 ·p2 = 2

so a/b ̸∈ A. Next, for ε> 0, we can find a fraction a/b with

a/b ≤p
2 ≤ a/b +ε.

Then

a2/b2 ≤ 2
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so a/b ∈ A but p
2 ≤ a/b +ε =⇒ p

2−ε≤ a/b

so
p

2−ε is not an upper bound for A.

Example: Let A and B be sets of real numbers each bounded above. Then

sup(A∪B) = max{sup A, supB}.

Indeed, if MA = sup A and MB = supB then

M = max{MA, MB } ≥ MA ≥ a

for each a ∈ A which shows M is an upper bound for A, and

M ≥ MB ≥ b

showing M is an upper bound for B . Without loss of generality, M = MA and if ε> 0

there is an a ∈ A (and hence in A∪B) such that M −ε< a which shows that M −ε is

not an upper bound of A∪B .

Example: A tempting claim to make is that m = min{sup A, supB} = sup(A∩B). It

is true that m is an upper bound: if, without loss of generality, m = supB then for

each c ∈ A∩B we know c ∈ B so c ≤ m. However, if A = [0,1]∪ {3} and B = [0,2] then

sup A = 3, supB = 2 but A∩B = [0,1] and its supremum is 1.

Theorem 3.1: The Nested Interval Theorem

For each n ∈ N suppose In = [an ,bn] is an interval and suppose further that

these intervals are nested in the sense that In+1 ⊆ In . Then
⋂∞

n=1 In is not

empty.

Proof. The nesting condition says that

an ≤ an+1 ≤ bn+1 ≤ bn

for each n. We claim an ≤ bm for each n and m. Indeed, if n ≤ m

an ≤ an−1 ≤ ·· · ≤ am ≤ bm

by nesting, while if n > m then

an ≤ bn ≤ ·· · ≤ bm

by nesting. This shows that if A = {an : n ∈N} then for each m, bm is an upper bound

for A. This means A is bounded above, so sup A exists and moreover bm ≥ sup A. We

claim sup A ∈ In for each n and this will prove the theorem. To see why, notice that

for each n, bn ≥ sup A ≥ an (the first inequality comes from what we just worked

on, the second because sup A is an upper bound for A).
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3.3 The real numbers as cuts

We can think of a real number x as a point on the real line. It divides the line into a

left and right half

Lx = (−∞, x), Rx = [x,∞).

It’s just a convention that we have included x in the right half. Anyways, for each x

we get two sets

Lx = {y ∈R : y < x}, Rx = {y ∈R : y ≥ x}

and converse from a division of R into two halves like this, we could recover x:

x = supLx .

We could just as well have used x to partition the rationals, instead of the reals:

Lx = {y ∈Q : y < x}, Rx = {y ∈Q : y ≥ x}.

We can still recover x from this partition since we still have x = supLx , but the up-

shot is we have defined this partition without having to know what R is.

A partition ofQ into left and right halves is called a Dedekind cut. Formally, a pair

(L,R) is a cut if

1. Q= L∪R,

2. neither L nor R is empty, and the sets are disjoint,

3. L has no greatest element, and

4. for l ∈ L and r ∈ R, we have l < r , or equivalently, if l ∈ L and a ∈Q with a ≤ l ,

then a ∈ L.

In the last point, we have given two conditions, and claimed them to be equiva-

lent. They really are: if a ≤ l and a is a rational number, then a ∈ L or R in view of

(1). But every element in R has to be larger than every element in L, and a ≤ l , so

a has to be in L. Conversely, if l and r are two numbers from L and R respectively,

were it that r ≤ l , we would necessarily have r ∈ L. But the fact that the sets are

disjoint means that r cannot be both in R and L.

For any cut (L,R) we might ask where the cut occurs? That is, for which x do

we have L = Lx and R = Rx . The fantastic idea here is that we can define L and R

without knowing x, but x is uniquely determined by L and R. So we can think of

the cut (L,R) as defining the number x, rather than the other way around, and this

is Dedekind’s construction of the real numbers.
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Definition 3.3: Real numbers as Dedekind cuts

The real numbers consists of the set

R= {(L,R) : (L,R) is a cut ofQ}.

This will feel a little awkward as we have defined a set of numbers by interpreting

a number as a pair of sets, rather than something with digits. However, they behave

in just the same ways. For instance, R contains Q in a natural way: if a is a rational

number, then we can represent a as the cut

((−∞, a), [a,∞))

with the intervals consisting of rational numbers. We can add two cuts together.

Example: Suppose (L1,R1) and (L2,R2) are two cuts ofQ. Then so is

(L1 +L2,R1 +R2)

where for two sets of rational numbers A and B we define

A+B = {a +b : a ∈ A, b ∈ B}.

We can also order cuts, and talk about suprema. We say (L1,R1) ≤ (L2,R2) if L1 ⊆
L2. This makes perfect sense: if we had interval (−∞, x1) and (−∞, x2) for L1 and

L2, then saying L1 ⊆ L2 is exactly saying that x1 ≤ x2. Now if A is a set of cuts, then

we can define a new cut

sup
A

=
( ⋃

(L,R)∈A
L,

⋂
(L,R)∈A

R

)
.

This is also a cut. It’s greater than every element of A since if (L0,R0) ∈ A then

L0 ⊆
⋃

(L,R)∈A
L.

But if (L′,R ′) is another upper bound for A then

L′ ⊇ L

for each (L,R) ∈ A so

L′ ⊇ ⋃
(L,R)∈A

L

and this shows L′ ≥ sup A.

There are more properties to check in order to convince yourself that these cuts

really to have all the qualities we want the real numbers to have. We’ll leave these

qualities for the reader to investigate, and instead provide another definition of the

reals in terms of sequences later on.
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4
SEQUENCES

4.1 Sequences and their basic limit properties

A sequence, formally, is a function a : N→ R. But rather than write a sequence as

an input and an output, we write it sequentially:

a1, a2, a3, . . . .

We also write {an}∞n=1 or else just {an} for a sequence. While we’re at it, subsequence

of a sequence is just a sequence obtained by omitting some of the terms from the

original sequence:

an1 , an2 , an3 , . . .

where now n1 < n2 < n3 < . . . are just some indices, and because we may have

skipped some terms, nk (the index of k’th term of the subsequence) is at least k

(the index of the k’th term from the original sequence). So this subsequence is the

new infinite list of numbers {ank }∞k=1.

Example: The sequence 0,1,0,1, . . . of alternating 0’s and 1’s is an infinite sequence.

Some subsequences are {0}∞k=1, the sequence of all 0’, or the sequence 0,0,1,0,0,1,0,0,1,0,0,1, . . .,

obtained be omitting every second 1.

Example: The sequence 1,4,9,16,25, . . . of perfect squares is an infinite sequence.

In this example an = n2. The perfect fourth powers is a subsequence: 1,16,81,256, . . ..
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Here the terms of the sequence are ak2 = (k2)2, so nk = k2.

Definition 4.1: Limit of a sequence

A sequence {an} converges to a real number L if for any ε> 0, there is a thresh-

old N = N (ε) so that for any n ≥ N ,

|an −L| < ε.

We say {am} diverges to ∞ if for any M ∈N there is a threshold N = N (M) so

that for any n ≥ N ,

an > M .

Example: The sequence of perfect squares diverges to ∞. Indeed, if M is any

number, we take M =p
M +1 and if n ≥ N then

an = n2 ≥ N 2 > (
p

M)2 = M .

Example: The decimal approximations an = ⌊10nπ⌋/10n of π converge to π. To

see why, we notice first that ⌊10nπ⌋ means to round down. Thus

10nπ≥ ⌊10nπ⌋ ≥ 10nπ−1

and so dividing through by 10n ,

π≥ an ≥π−10−n .

From here we see that if N = log10(1/ε)+1 then n ≥ N tells us that

10−n ≤ 10−N < ε

and so

π≥ an >π−ε
which in particular means that

|an −π| < ε.

Definition 4.2: Cauchy sequence

A sequence {am} is called a Cauchy sequence if for any ε> 0 there is a thresh-

old N = N (ε) so that if n,m ≥ N then

|an −am | < ε.

The Cauchy property turns out to be a nice way for testing convergence.
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Lemma 4.1: Convergent sequences are Cauchy

If a sequence {an} converges to a number L then it is a Cauchy sequence.

Proof. Let ε> 0. Since {an} converges, there is an N so that if n ≥ N we know |an −
L| < ε/2. This same threshold tells us that if n,m ≥ N then

|an −am | ≤ |an −L|+ |am −L| < ε/2+ε/2 = ε

which verifies the Cauchy property.

Example: The sequence 0,1,0,1,0,1. . . does not converge. Indeed, if it did, it

would have to be Cauchy, in particular with ε = 1/2. But for any threshold N , two

consecutive terms are always separated by 1, which is bigger than ε.

Lemma 4.2

If {an} converges to L, then so does every subsequence of {an}.

Proof. If {ank }∞k=1 is a subsequence then in particular we know nk ≥ k. Let ε> 0 and

suppose N is the threshold so that |an −L| < ε for n ≥ N . Then if k ≥ N , nk ≥ k ≥ N

and so

|ank −L| < ε
as well.

Lemma 4.3

If an → A and bn → B for some numbers A and B then an +bn → A+B .

Proof. Let ε> 0. From the convergence of an and bn we know there are thresholds

N1 and N2 so that if n ≥ N1 we have |an − A| < ε/2 while if n ≥ N2 we have |bn −B | <
ε/2. Let N = max{N1, N2}. Then n ≥ N tells us n is beyond both thresholds N1 and

N2 so

|(an +bn)− (A+B)| = |(an − A)+ (bn −B)| ≤ |an − A|+ |bn −B | < ε/2+ε/2 = ε.

Lemma 4.4

If an → A and bn → B for some numbers A and B then anbn → AB .
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Proof. Let ε> 0. From the convergence of an and bn we know there are thresholds

N1 and N2 so that if n ≥ N1 we have

|an − A| < ε

3|B |
while if n ≥ N2 we have

|bn −B | < min

{
ε

3|A| , |B |
}

.

Let N = max{N1, N2}. Then n ≥ N tells us n is beyond both thresholds N1 and N2 so

|anbn−AB | = |anbn−Abn+Abn−AB | ≤ |anbn−Abn |+|Abn−AB | = |A−an ||bn |+|A||bn−B |.

We are allowed to estimate |A−an | and |bn −B | because n is beyond the threshold,

so we get

|A−an ||bn |+ |A||bn −B | < ε

3|B | |bn |+ |A| ε

3|A| =
ε

3

|bn |
|B | +

ε

3
.

But

|bn | ≤ |bn −B |+ |B | < 2|B |.
So we get

ε

3

|bn |
|B | +

ε

3
≤ ε

3

2|B |
|B | + ε

3
= ε.

Just how we chose the right thresholds for N1 and N2 in the last proof takes prac-

tice. You can figure them out by reversing the process: apply all the inequalities you

can first, and then figure out how close you need an to be to A and bn to be to B to

make it all work out.

Lemma 4.5

If bn → B and B ̸= 0 then bn is eventually non-zero and limn→∞ 1/bn = 1/B .

Proof. Let ε= |B |/2 in the definition of convergence for bn . Then for n sufficiently

large, we have

|B | = |B −bn +bn | ≤ |B −bn |+ |bn | ≤ |B |/2+|bn |

which rearranges to |bn | ≥ |B |/2 and in particular bn cannot be zero. Next, if ε> 0 is

arbitrary, we would like to estimate∣∣∣∣ 1

bn
− 1

B

∣∣∣∣= |bn −B |
|bn ||B | .
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Since |bn | ≥ |B |/2 for n sufficiently large, we know the right hand side above is at

most |bn −B |
|B |/2 · |B | =

2|bn −B |
|B |2 .

But if n is sufficiently large, we can be sure (by convergence of bn) that

|bn −B | < ε|B |2
2

and so ∣∣∣∣ 1

bn
− 1

B

∣∣∣∣< ε.

Lemma 4.6

If an → A and bn → B ̸= 0 then an/bn is eventually defined and converges to

A/B .

Proof. We know 1/bn is eventually defined and converges to B . So

an

bn
= 1

bn
·an → 1

B
· A

by the lemma about products of sequences.

Lemma 4.7

Suppose an → A and bn → B and further that an ≤ bn for each n. Then A ≤ B .

Proof. If not, A−B > 0 and set ε= (A−B)/2 in the definition of convergence for an

and bn . We get two thresholds, one (say N1) such that

an > A−ε= A+B

2

if n ≥ N1, and another (say N2) such that

bn < B +ε= A+B

2

if n ≥ N2. These combine to say that if n ≥ max{N1, N2} then

an > A+B

2
> bn

which is a contradiction.
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4.2 Monotone sequences

Definition 4.3: Monotone sequence

A sequence {an} is called increasing (resp. strictly increasing) if am ≤ an when

m < n (resp. am < an when m < n). A sequence {an} is called decreasing (resp.

strictly decreasing) if am ≥ an when m < n (resp. am > an when m < n). A

sequence which is any of the above is called monotone.

Definition 4.4: Bounded sequence

A sequence {an} is called bounded if there is a number M such that for each

n,

−M ≤ an ≤ M .

Theorem 4.1: Monotone convergence theorem

Let {an} be a bounded sequence. If {an} is increasing then

lim
n→∞an = sup{an : n ∈N}.

If {an} is decreasing then

lim
n→∞an = inf{an : n ∈N}.

Proof. We just prove the increasing case. We can apply it to the sequence {−an} to

handle the decreasing case.

Let L = sup{an : n ∈ N}. By definition an ≤ L for each n. Furthermore, if ε > 0,

there is some aN with

L−ε< aN .

Since the sequence is increasing, if n ≥ N then

an ≥ aN > L−ε

so that in particular

|an −L| < ε.

This means that an → L.
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Theorem 4.2: Monotone convergence theorem (divergence case)

Let {an} be an unbounded sequence. If {an} is increasing then

lim
n→∞an =∞.

If {an} is decreasing then

lim
n→∞an =−∞.

Proof. We just prove the increasing case. We can apply it to the sequence {−an} to

handle the decreasing case.

Let M be any positive integer larger than |a1|. Then all terms of the sequence

satisfy

an ≥ a1 ≥−M .

But the sequence is not bounded, so it cannot be that an ≤ M for all n. Thus there

is some N with aN > M . But if n ≥ N ,

an ≥ aN > M

which precisely shows that an →∞.

Theorem 4.3: The Monotone Subsequence Theorem

Let {an} be any sequence. Then {an} has a monotone subsequence.

We will prove the Monotone Subsequence Theorem by first proving Ramsey’s The-

orem.

Theorem 4.4: Ramsey’s Theorem

Suppose we have a finite set of r colours, which we just label {1, . . . ,r }. Sup-

pose further that for each pair {i , j } of two natural numbers, we colour that

pair with one of the colours {1, . . . ,r }. Then there is an infinite set I ⊆N and a

colour c ∈ {1, . . . ,r } such that if i , j ∈ I then {i , j } is coloured c.

Let’s see how Ramsey’s Theorem proves the Monotone Subsequence Theorem.

Let {an} be our given sequence. If i , j ∈ N with i < j we colour {i , j } with one of u

or d (for up or down): if ai ≤ a j we colour {i , j } with u and if ai > a j , we colour

{i , j } with d . This lets us colour all of the pairs of natural numbers. By Ramsey’s

Theorem, there is an infinite set

I = {n1 < n2 < . . .}
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of natural numbers so that {ni ,n j } is always coloured the same, say u. This means

that if i < j then ani ≤ an j and this means that the infinite sequence {ank } is in-

creasing.

Now we present the proof of Ramsey’s Theorem.

Proof. We are given that each pair of numbers {i , j } is labeled with one of the colours

{1, . . . ,r }.

• Step 1: Start with the number n1 = 1 and set A1 = {2,3,4, . . .}. We divide A1

into r sets

A1,c = {m ∈ A1 : {n1,m} is coloured c}.

One of the sets A1, j has to be infinite, since their union is A1 which is infinite.

Lets say A1,c1 is infinite. Then we set A2 = A1,c1 and move on to step 2.

• Step 2: Pick the smallest number n2 ∈ A2. We divide A2 into r sets

A2,c = {m ∈ A2 : {n2,m} is coloured c}.

One of the sets A2,c has to be infinite, since their union is A2 which is infinite.

Lets say A2,c2 is infinite. Then we set A3 = A2,c2 and move on to step 3...

Eventually we reach

• Step k: Pick the smallest number nk ∈ Ak . We divide Ak into r sets

Ak,c = {m ∈ Ak : {nk ,m} is coloured c}.

One of the sets Ak, j has to be infinite, since their union is Ak which is infinite.

Lets say Ak,ck is infinite. Then we set Ak+1 = Ak,ck and move on to step k +1...

We started step k with an infinite set Ak . We chose a colour ck from {1, . . . ,r } and a

number nk from Ak such that every number in the infinite set Ak+1 is connected to

nk by the colour ck . Also notice that Ak+1 was always a subset of Ak and so in fact

we have the inclusions

A1 ⊇ A2 ⊇ A3 ⊇ . . .

Now, we have a sequence c1,c2,c3, . . . of colours from {1, . . . ,r } and so there is an

infinite set K ⊆N and a colour c such that ck = c for each k ∈ K . In other words, K

is the set of indices of steps where we chose colour c. If k1 and k2 are two numbers

from K , then Ak1 = Ak1,c and Ak2 = Ak2,c because at steps k1 and k2 we chose the

colour c. If k1 < k2 then Ak2 ⊆ Ak1 which means nk2 was connected to nk1 with

the colour c. In other words, the set I = {nk : k ∈ K } satisfies the conclusion of the

theorem.
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4.3 Other convergence results

From the Montone Convergence Theorem and the Monotone Subsequence Theo-

rem we learn the following.

Theorem 4.5: Bolzano-Weierstrass

If {an} is a bounded sequence then it has a convergent subsequence.

Proof. We know that {an} has a monotone subsequence {ank } and all of the terms

in the sequence are bounded. Thus they converge by Monotone Convergence The-

orem.

We all learn that Cauchy sequences converge. This is an incredibly useful fact

since the Cauchy condition is often easier to check than actually finding a limit.

Lemma 4.8

Suppose {an} is a Cauchy sequence. Then it is bounded.

Proof. Let ε= 1 in the definition of Cauchy sequence. Then there is some number

N such that |am − an | ≤ 1 if n,m ≥ N and in particular, for all n ≥ N , an ∈ [aN −
1, aN +1]. Thus all the terms of the sequence are either one of a1, . . . , aN−1 or else lie

in a bounded interval, and hence are themselves bounded numbers.

Lemma 4.9

Suppose {an} is a Cauchy sequence and it has a subsequence which converges

to a limit L. Then the whole sequence converges to L.

Proof. This is a homework exercise, but the gist is that some number ank will be

within ε/2 of L (any term far enough down the hypothetical subsequence) and so

for any sufficiently large n,

|an −L| ≤ |an −ank |+ |ank −L| ≤ ε/2+ε/2,

using the Cauchy condition.

Theorem 4.6: Cauchy’s Criterion

Any Cauchy sequence converges.

Proof. The sequence is bounded. By Bolzano-Weierstrass, it has a subsequence

converging to some limit L. The whole sequence must then converge to L.
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So far we have proved a number of theorems to get to a place where we know

Cauchy sequences converge. These theorems can all be traced back to the assump-

tion that a bounded set has a supremum, so we have thus shown “sup A exists if A

is bounded" implies that “Cauchy sequences converge". The converse is also true.

To prove this, a very handy lemma will come into play.

Lemma 4.10: The Squeeze Theorem

Suppose {an}, {mn}, {bn} are three sequences with the properties

• for some number L, limn→∞ an = limn→∞ bn = L, and

• for each n, an ≤ mn ≤ bn .

Then limn→∞ mn = L.

Proof. Let ε > 0 and suppose N is so large that if n ≥ N we can be sure that |an −
L|, |bn −L| ≤ ε. Then

L−ε≤ an ≤ mn ≤ bn ≤ L+ε
so |mn −L| ≤ ε too.

Theorem 4.7: Completeness from Cauchy’s Criterion

Suppose we know that any Cauchy sequence of numbers converges. Then

any bounded set has a supremum.

Proof. Let A be a non-empty bounded set. We will construct a pair of sequences

{an} and {bn} with the following properties:

• {an} is an increasing sequence of numbers from A,

• {bn} is a decreasing sequence of upper bounds for A, and

• for each n, 0 ≤ bn −an ≤ 1
2n−1 (b1 −a1).

Initially we choose a1 to be any element from A, and let b1 be any upper bound for

A (which exists, since A is bounded).

For the second entries of the sequences, we examine the midpoint is m1 = (a1 +
b1)/2. There are two cases. If m1 is an upper bound for A, then we set b2 = m1 and

we set a2 = a1. In this way b2 ≤ b1 and a2 ≥ a1; b2 is still an upper bound for A, and

a2 is still an element of A; and since b2 is the midpoint, it is half as far from a1 as b1

is:

b2 −a2 = m1 −a1 = (b1 −a1)/2.
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If m1 is not an upper bound for A then there is some number a ∈ A which is larger

than m1. We set a2 = a and b2 = b1. In this way b2 ≤ b1 and a2 ≥ a1; b2 is still an

upper bound for A, and a2 is still an element of A; and since a2 is larger than the

midpoint, it’s less than half as far from a1 as b1 is:

b2 −a2 ≤ b1 −m1 = (b1 −a1)/2.

If m1 is not an upper bound for A then there is some number a ∈ A which is larger

than m1. We set a2 = a and b2 = b1. For subsequent entries in the sequences we

proceed in the same fashion. Having constructed bn and an , we look at the mid-

point mn . If it is an upper bound we set bn+1 = mn and an+1 = an . If not, we find an

element from an+1 ∈ A which is larger than mn and set bn+1 = bn . In any case,

bn+1 −an+1 ≤ 1

2
(bn −an) ≤ 1

2

1

2n
(b1 −a1) = 1

2n+1
(b1 −a1)

so that (3) is always true.

Now, the sequence {an} is Cauchy: if n > m > N then

aN ≤ am ≤ an ≤ bN

since {an} is increasing and bN is always an upper bound for A, so that

|an −am | ≤ bN −aN ≤ b1 −a1

2N−1

which can be made as small as we like by choosing N large. In the same way, {bn} is

Cauchy: if n > m > N

aN ≤ bn ≤ bm ≤ bN .

This is enough to guaranteed that an → L1 and bn → L2 for some limits L1 and L2.

By the Squeeze Theorem, though, we have that

0 ≤ bn −an ≤ b1 −a1

2n−1

and both {0} (as a constant sequence) and { b1−a1
2n−1 } converge to 0. So

L2 −L1 = lim
n→∞bn −an = 0

and thus L1 = L2. By the order rule for sequences, if a ∈ A then a ≤ bn for each n

and so

L = lim
n→∞bn ≥ a

which shows L is an upper bound for A. But an → L shows that in fact L is the

supremum of A.
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4.4 The Erdős-Szekeres Theorem

The Monotone Subsequence Theorem is a purely combinatorial theorem that, when

combined with the Monotone Convergence Theorem, unlocked a number of ana-

lytic results. The Erdős-Szekeres Theorem provides a quantitatively strong version

of the Monotone Subsequence Theorem which lets us pass to a reasonably large

subsequence.

Theorem 4.8: Erdős-Szekeres Theorem

Let a1, . . . , aN 2 be a sequence of N 2 real numbers. It contains a monotone

subsequence of length at least N .

Proof. Let M denote the length of the longest monotone subsequence of the se-

quence in question. We define a function

φ : {1, . . . , N 2} → {1, . . . , M }× {1, . . . , M }

defined as follows. We let I j denote the length of the longest increasing subse-

quence which begins at a j and D j the length of the longest decreasing subsequence

which begins at a j . Then, since a j is always a member of these subsequences,

1 ≤ I j ,D j ≤ M . The map φ is defined by the rule φ( j ) = (I j ,D j ). If M < N then the

map φ cannot be injective, since the domain has N 2 elements but the co-domain

has only M 2. This means that for some j < k we have φ( j ) = φ(k). By definition,

there is an increasing sequence of length Ik , say (aml ) starting at ak and a decreas-

ing sequence of length Dk , say (anl ) starting at ak . But if a j ≤ ak then we can create

an increasing sequence of length Ik + 1 starting at a j by appending a j to the be-

ginning of the sequence (aml ), which would tell us that I j > Ik ; if a j > ak then we

can append a j to the beginning of (ank ) and create a decreasing sequence of length

Dk +1 starting at a j , so that D j > Dk . In either case, we cannot have φ( j ) =φ(k), so

M ≥ N .
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5
SERIES

5.1 Convergent series

And infinite series is the result of trying to add infinitely many numbers together.

Say we want to add all of the terms of the sequence {an}. Well, adding N terms

results in the partial sum

SN = a1 + . . . , aN .

If we want to add all the terms of this sequence, we would let N →∞, which leads

to the following.

Definition 5.1: Convergent series

The infinite series

S =
∞∑

n=1
an

is said to converge (to S) if the sequence SN of partial sums converges to S.

Right away, this rules out the convergence for many infinite series.
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Lemma 5.1: Divergence Criterion

If ∞∑
n=1

an

converges then an → 0.

Proof. The sequences {SN }∞N=1 and {SN+1}∞N=1 both converge to S (the second se-

quence is the same the first, just shifted by one). Thus

aN+1 = SN+1 −SN → S −S = 0.

The Divergence Criterion is enough to guarantee that a sequence like 1+1+1+1+
. . . diverges, but not enough to guarantee convergence, as in the following example.

Theorem 5.1: Divergence of the harmonic series

The series ∞∑
n=1

1

n

diverges.

Actually this fact follows from a slightly more general fact.

Lemma 5.2: Cauchy Condensation Test

If {an} is a decreasing sequence of non-negative numbers and if

∞∑
n=1

an

converges then
∞∑

j=0
2 j a2 j

also converges. In particular, 2k a2k → 0.

Proof. Observe that since the terms of the sequence are non-negative, the partial

34



sums SN are increasing and hence their limit is S = sup{SN }. Now

S2k−1 = (a1)+ (a2 +a3)+ (a4 +a5 +a6 +a7)+ . . .

=
k−1∑
j=0

2 j+1−1∑
n=2 j

an

≥
k−1∑
j=0

2 j+1−1∑
n=2 j

a2 j+1

≥
k−1∑
j=0

2 j a2 j+1 .

So the partial sums of the series
∑k−1

j=0 2 j a2 j+1 bounded by S2k ≤ S. Thus these partial

sums also increase to their supremum and the series converges.

In fact, Cauchy Condensation tells us that
∑N

n=1 1/n diverges like log N . So the

Divergence Test is not an if and only if, and in fact neither is the Cauchy Condensa-

tion Test. However, if the terms of the sequence happen to cancel out a bit, we can

obtain convergence.

Theorem 5.2: Alternating Series Test

Suppose an is a decreasing sequence of positive numbers with an → 0. Then

∞∑
n=1

(−1)n+1an

converges.

Proof. We have

S2N = (a1 −a2)+ (a3 −a4)+·· ·+ (a2N−1 −a2N )

and this is a sum of non-negative terms, so S2N is non-negative and increasing with

N . Meanwhile

S2N+1 = a1 − (a2 −a3)− (a4 −a5)+·· ·+ (a2N+1 −a2N ) = S2N +a2N+1

and this sequence is decreasing with N , but still larger than S2N , and in particular,

larger than 0. This means S2N+1 converges by the Monotone Convergence Theo-

rem. On the other hand,

S2N ≤ S2N+1 ≤ S1

so the sequence S2N also converges by Monotone Convergence. Finally, S2N+1 −
S2N = a2N+1 → 0, so in fact S2N+1 and S2N converge to the same limit, S say, which

means SN also converges to S.
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So sometimes introducing cancellation among the terms of a series can make it

converge. But cancellation can never make a series diverge.

Lemma 5.3

If
∑

n |an | converges then so does
∑

n an .

Proof. We show that

SN =
N∑

n=1
an

is Cauchy. Write

TN =
N∑

n=1
|an |.

Then if N > M

SN −SM =
N∑

n=M+1
an

so

|SN −SM | =
N∑

n=M+1
|an | = TN −TM

and because TN converges, it is a Cauchy sequence, and the right hand side is arbi-

trarily small provided M and N are sufficiently large.

Definition 5.2: Absolutely convergent series

A series ∞∑
n=1

an

is called absolutely convergent if ∑
n=1

|an |

converges.

The above lemma says that absolutely convergent series are convergent series. In

fact they converge even if you rearrange the terms.
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Theorem 5.3: Rearrangements of absolutely convergent series

converge

Let
∑

n an be an absolutely convergent series converging to S and letσ :N→N

be a bijection. Then
∞∑

n=1
aσ(n)

is also absolutely convergent, and converges to S.

Proof. First we show that for any bijection σ :N→N, the series

∞∑
n=1

|aσ(n)|

converges, and the limit does not depend on σ. Indeed, write

TN =
N∑

n=1
|aN |, T σ

N =
N∑

n=1
|aσ(n)|.

Then, if MN = max{σ(1), . . . ,σ(N )}, we have

T σ
N =

N∑
n=1

|aσ(n)| ≤
MN∑
n=1

|an | = TMN

because the summands in |an | are all non-negative, and TMN has all the |aσ(n)| as

summands. This shows that

T σ
N ≤ TMN ≤ supTM

and Since TM is increasing,

supTM = lim
M→∞

TM =
∞∑

n=1
|an |.

Thus

T σ
N ≤

∞∑
n=1

|an |,

and since T σ
N is increasing,

∞∑
n=1

|aσ(n)| = sup
N

T σ
N ≤

∞∑
n=1

|an |.

This shows that ∞∑
n=1

aσ(n)

is absolutely convergent. Now we need only to show that
∑

an and
∑

aσ(n) converge

to the same thing. But, denoting by SN and SσN their respective partial sums, we get

|SN −SσN | =
∣∣∣∣∣ N∑
n=1

an −
N∑

n=1
aσ(n)

∣∣∣∣∣ .
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But SN and SσN will both include a1, . . . , aM as summands if N is sufficiently large,

since there are numbers k1, . . . ,kM such that σ(km) = m (by surjectivity), and all the

summands common to SN and SσN are cancelled out. This means

|SN −SσN | =
∣∣∣∣∣ N∑
n=1

an −
N∑

n=1
aσ(n)

∣∣∣∣∣≤ ∞∑
m=M+1

|an |+
∞∑

m=M+1
|aσ(n)|

and both of these are the tails of convergent series, and so are smaller than ε if M

(and in turn N ) is large enough. So

lim
N→∞

SN −SσN = 0

and both series are in fact the same.

The previous theorem shows that an absolutely convergent series can be added

in any order and yield the same result. If the series is merely convergent (but not

absolutely convergent) then this fails in the most spectacular way.

Theorem 5.4: Riemann’s Rearrangement Theorem

Suppose
∑

n an converges but not absolutely. Then for any x ∈ R there is a

bijection σ :N→N such that
∑

n aσ(n) = x.

Proof. Set

a+
n =

an if an ≥ 0,

0 if an < 0,
, a−

n =
−an if an < 0,

0 if an ≥ 0,

so that

an = a+
n −a−

n .

Set

S+
N =

N∑
n=1

a+
n , S−

N =
N∑

n=1
a−

n .

Because a+
n and a−

n are both non-negative (from the way we defined them), S+
N and

S−
N are both increasing with N .

Now by definition,

SN =
N∑

n=1
an = S+

N −S+
N

while
N∑

n=1
|an | = S+

N +S−
N .

The second identity shows that one of S+
N or S−

N must increase to infinity, since the

left hand side does. But in fact the other must too, since if only S+
N diverged, then

from the first identity

SN +S−
N = S+

N
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and the left hand side would converge because SN converges by hypothesis, and S−
N

would be increasing and bounded. A similar argument shows that S+
N must diverge

if S−
N does. The important point is this: for any integer m,

∞∑
n=m

a+
n =

∞∑
n=m

a−
n =∞.

This is because each series in its entirety diverges, and the first m −1 terms of that

series have a finite sum.

We now proceed as follows. We will alternate adding some terms from S+
N in or-

der and then subtracting some terms from S−
N in order. In this way, all of the an ’s

will be eventually added, and only once. The order in which we add these terms

determines σ.

First, we set m1 to be the minimum integer such that

S+
m1

≥ x.

This integer could be 0. So we have the first few non-negative an ’s until we sur-

passed x. Next let n1 denote the smallest integer such that

S+
m1

−S−
n1

< x.

Thus we have added in the first few negative an ’s to move to the other side of x.

Next let m2 denote the smallest integer such that

S+
m2

−S−
n1

≥ x,

so we not continue adding positive terms from the series until we move to the other

side of x again. And we continue this process indefinitely, adding non-negative

terms, and then negative terms, so that we switch every time we move from one

side of x to the other. We can always do this: because the tails of the non-negative

and negative series are both infinite, we can always move left or right as far as we

need to by adding terms from either series. Moreover, the moment we cross x, it is

because we added a number a+
mk

or else a−
nk

which pushed us past x. So

x −a−
nk

≤ S+
mk

−S−
nk

< x, x +a+
mk+1

≥ S+
mk+1

−S−
nk

≥ x

at each step of the way. This shows that at step k, we are never more than a−
nk

or a+
mk+1

away from x, and both of these quantities tend to 0 by the Divergence

Criterion. Thus

S+
mk+1

−S−
nk

,S+
mk

−S−
nk

→ x.

All other partial sums lie between these, and hence the sequence of all partial sums

converge to x.
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6
TOPOLOGY

6.1 Basic topology on R

Definition 6.1: Open set

e call a subset U of R open if for each x ∈ U , there is some ε > 0 such that

(x −ε, x +ε) ⊆U .

In other words, U is open if every point in U is surrounded by a neighbourhood

of points from U .

Lemma 6.1

Both R and {} are open.

Proof. For each x ∈ R, we have (x −1, x +1) ⊆ R. For each x ∈ {} we also have (x −
1, x +1) ⊆ {}, vacuously.

Lemma 6.2

Open intervals are open.
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Proof. Let (a,b) be an open interval. We will assume a,b < ∞, that case can be

handled similarly. If a < x < b then x −a and b −x are both positive. Let

ε= min{x −a,b −x}.

Then (x −ε, x +ε) ⊆ (a,b) since for t ∈ (x −ε, x +ε) we have

t > x −ε≥ x − (x −a) = a, t < x +ε≤ x + (b −x) = b.

Theorem 6.1

If U is any collection of open sets then
⋃

U∈U U . If U1, . . . ,UN are open sets,

then so is U1 ∩ ·· ·∩UN . Thus an arbitrary union of open sets is open, and a

finite intersection of open sets is open.

Proof. If x ∈ ⋃
U∈U U then x ∈ U for some U ∈ U , and since U is open, it must be

that (x −ε, x +ε) ⊆U for some ε> 0. But thus means (x −ε, x +ε) ⊆⋃
U∈U U .

If x ∈U1∩. . .∩UN then for n = 1, . . . , N , there is some εn > 0 such that (x−ε,x+εn) ⊆
Un . But if ε= min{ε1, . . . ,εN } then ε> 0 and

(x −ε, x +ε) ⊆ (x −εn , x +εn) ⊆Un

so that in fact (x −ε,e +ε) ⊆U1 ∩ . . .∩UN .

Example: It is not the case that arbitrary intersections of open sets are still open.

For instance (−1/n,1/n) is open for each n ∈N but the intersection⋂
n∈N

(−1/n,1/n) = {0}

is not.

Definition 6.2: Topological space

A set of points X along with a collection U consisting of subsets of X is said

to form a topological space if the following conditions hold:

1. X ,;∈U ,

2. if U ′ ⊆U is any collection of sets from U then
⋃

U∈U ′ U also belongs to

U , and

3. if U1, . . . ,UN ∈U then so is U1 ∩ . . .∩UN .

The sets U are called the open subsets of X .
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What we have just shown is that R forms a topological space where U is the col-

lection of open subsets U of R defined by the neighbourhood condition x ∈U =⇒
(x − ε, x + ε) ⊆ U for some ε > 0. A closed set in a topological space is one whose

complement is open.

6.2 Open and closed sets

In a general topological space, the open sets are declared: U is open if and only if

U ∈ U . Similarly, the closed sets are the complements of the open sets. But these

rules don’t give a good sense of what the open or closed sets are. In the case of R,

we can characterize the open and closed sets.

Theorem 6.2: Closed using sequences

A set C is closed if and only if whenever {cn} is a sequence with cn ∈C for each

n ∈N and cn → L, then L ∈C as well.

Proof. First we prove that if C is closed then if {cn} is a sequence with cn ∈C for each

n ∈N and cn → L, we know L ∈ C . If L ̸∈ C , then L ∈ C c which is open because C is

closed. So (L −ε,L +ε) ∈C c for some ε> 0. However, since cn → L, this means that

cn ∈ (L−ε,L+ε) for all sufficiently large n. Then cn ∈C and cn ∈C c , a contradiction.

Conversely, suppose we know that every convergent sequence of numbers from C

has its limit in C too. Let x ∈C c . If, for each n, (x−1/n, x+1/n) is not a subset of C c ,

then we can find an element, cn , from this interval which belongs to C . By design,

cn → x, but cn ∈C for each n. Thus x ∈C also, but x ∈C c , again a contradiction.

To characterize open sets we need the following lemma.

Lemma 6.3

Let U be an open set. Then for x in U , there is a largest interval Ix = (lx ,rx)

such that x ∈ Ix ⊆U , in the sense that lx ,rx ̸∈U .

Proof. Let rx = sup{r ∈R : (x,r ) ⊆U }. Then we claim that rx > x, rx ̸∈ X ,and (x,rx) ⊆
X . First, since x ∈U and U is open, there is an ε> 0 so that (x, x+ε) ⊆ (x−ε, x+ε) ⊆
U . Thus rx ≥ x +ε> x. Also, if rx ∈U then we would also know that for some ε> 0,

(rx −ε,rx +ε) ⊆U . However, rx −ε/2 < rx , so (x,rx −ε/2) ⊆U and hence

(x,rx +ε) = (x,rx −ε/2)∪ (rx −ε,rx +ε) ⊆U

which is impossible since rx +ε> rx . Finally, since rx > x we have x < rx −1/n < rx
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for all n larger than (rx −x)−1. Thus (x,rx −1/n) ⊆U and so is⋃
n>(rx−x)−1

(x,rx −1/n) = (x,rx).

In a similar way we show lx = inf{l : (l , x) ⊆U } satisfies lx < x, lx ̸∈U and (lx , x) ⊆
U . Thus (lx ,rx) ⊆U while lx ,rx ̸∈U .

Theorem 6.3: The structure of open sets

Let U be an open set. Then U is the disjoint union of at most countably many

open intervals.

Proof. For each x ∈ U let Ix be the largest interval in U containing x. We claim

that for x ̸= y , either Ix = Iy or else Ix ∩ Iy = ;. Indeed, if z ∈ Ix ∩ Iy then m =
min{ax , ay } < z < max{bx ,by } = M so (m, M) is an interval in U containing both Ix

and Iy , and hence (m, M) = Ix = Iy since the intervals Ix and Iy were defined to be

as large as possible.

This shows that the set

I = {Ix : x ∈U }

is a collection of disjoint intervals (provided we this of I as a set, so no intervals are

repeated in it). Since x ∈ Ix ∈I ,

U ⊆ ⋃
I∈I

I ,

and since each I ∈I is a subset of U , we also have⋃
I∈I

I ⊆U .

So U is a union of the disjoint intervals from I . To see that I is countable, observe

that since each I ∈ I is open and non-empty, it contains a rational number. By

choosing one rational number from each I in I , and observing that these rational

numbers must be distinct for each I by disjointness, we create an injection from I

toQ, so that I must be countable or else finite.
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6.3 Connected sets

Definition 6.3: Connected set

In a topological space, a set D is said to be disconnected if one can find open

sets U1 and U2 such that

1. U1 ∩U2 =;,

2. U1 ∩D ̸= ; and U2 ∩D ̸= ;, and

3. D ⊆U1 ∪U2.

A set which is not disconnected is called connected.

This seems to be a very abstract definition but it turns out to be very good at cap-

turing our intuition of connectedness all the while being flexible enough to work

with.

Theorem 6.4: Connectedness Criterion

A set A ⊆ R is connected if and only if it is an interval (i.e. for each a,b ∈ A

with a < b, we have (a,b) ⊆ A).

Proof. Suppose A is connected. If a,b ∈ A with a < b, let c ∈ (a,b). If c ̸∈ A then

(−∞,c)∪ (c,∞) disconnects A since each set is open, they are disjoint, a ∈ (−∞,c),

b ∈ (c,∞), and (−∞,c)∪ (c,∞) =R\ {c} ⊃ A.

Conversely suppose we have an interval and U1 and U2 are open sets which to-

gether contain A, each intersecting A in a non-empty set. We will show that U1∩U2

is non-empty, so that A cannot be disconnected. Suppose a,b ∈ A be such that

a ∈ U1 and b ∈ U2, and without loss of generality a < b. Then [a,b] ⊆ A since A

is an interval. Since U1 is open, there is a maximal interval Ia = (la ,ra) ⊆ U1 con-

taining a. If ra ≥ b then b ∈U1 as well and we’re done. Otherwise ra < b. Since Ia

is maximal, ra ̸∈ U1 but ra ∈ (a,b) and so ra ∈ U2. Since U2 is open, it contains an

interval (ra −ε,ra +ε). But then (a,ra)∩(ra −ε,ra +ε) is non-empty and hence so is

U1 ∩U2.

6.4 Compactness

We are going to introduce compactness, which is a tool for passing from the infinite

to the finite. There are a few definitions of compactness, and they are different in

some topological spaces. In the context ofR, however, they turn out the be the same
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thing, which will be the main theorem we will prove.

Definition 6.4: Sequential compactness

A set A is said to be sequentially compact if whenever {an} is a sequence with

an ∈ A for each n ∈N, there is a subsequence {ank } which converges to a limit

in A.

Example: Any finite set is sequentially compact. Indeed if A = {x1, . . . , xn} and {an}

is a sequence of numbers from A then, by the pigeonhole principle, one of the num-

bers xi appears infinitely often as some an . In other words {an} has a subsequence

which is just the constant sequence {xi }, which converges to xi ∈ A.

Example: The set [0,1) is not sequentially compact. Indeed, the sequence {1−1/n}

converges to 1, and hence so too does any subsequence. So no subsequence of

{1−1/n} can converge to a number in [0,1).

The failure of sequential compactness here comes from the fact that (0,1] is not

closed. This is a general phenomenon.

Lemma 6.4

If A is sequentially compact, then A is closed.

Proof. Our goal is to show that Ac is open. If Ac = ;, then it is open by definition.

If not, let x ∈ Ac . Consider the intervals (x −1/n, x +1/n) with n ∈N. If one of these

intervals is contained in Ac , then because x was arbitrary, we will have shown Ac is

open. If not, then each such interval intersects A at some point, say an . By design,

an → x. But any subsequence of {an} also converges to x. Since {an} has a subse-

quence converging to a limit from A, we would deduce that x ∈ A, contradicting the

fact that x ∈ Ac .

We could have used the alternative characterization of closed sets in the above

lemma, which would have been faster. In the proof provided, we constructed a

sequence, which is more or less the same is the proof of the alternative characteri-

zation.

Example: The set Z is not sequentially compact. This is because it contains the

sequence {n} which diverges to ∞.

Now the issue is that our sequence is not bounded, but rather diverges to infinity.

Again, this is a general thing.
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Lemma 6.5

If A is sequentially compact then A is bounded.

Proof. If A is not bounded, then A ̸⊆ [−N , N ] for any N . So we can construct a se-

quence of numbers aN with |aN |→∞. Any subsequence of this will fail to converge,

since it has to be unbounded.

Theorem 6.5

A set A is sequentially compact if and only if it is both closed and bounded.

Proof. We have already shown A needs to be both closed and bounded to be se-

quentially compact. Now lets show the converse. Suppose that {an} is a sequence

from A. Since A is bounded, so is {an}, and hence {an} has a convergent subse-

quence {ank } by the Bolzano-Weierstrass theorem. Since A is closed, we must also

have that limk→∞ ank ∈ A, showing that {an} has a subsequence converging in A.

Thus A is sequentially compact.

Definition 6.5: Open cover

If X is a topological space and Y ⊆ X , then an open cover of Y is any collection

U consisting of open sets and such that Y ⊆⋃
U∈U U .

Example: The sets (n,n +2) with n ∈Z are an open cover of R. The sets (n,n +1)

with n ∈Z are not an open cover of R because they fail to cover Z.

Example: The sets (−1/n,1+1/n) with n ∈ N forms an open cover of [0,1]. It is

pretty redundant, as any one of these sets will do the job.

Example: The sets (1/n −1/n2,1/n +1/n2) with n ∈N forms an open cover of the

set {1/n : n ∈N}.

Definition 6.6: Compactness

A set A is said to be compact if whenever U is an open cover of A, there is a

finite subset U ′ ⊆U which is also an open cover of A.

Example: The set (0,1] is not compact. Indeed U = {(1/n,2) : n ∈ N} forms an

open cover, since x ∈ (0,1] means 1 ≥ x > 1/n for some n ∈ N and so x ∈ (1/n,2).

However, if U ′ is finite subset of U then there is some largest m such that (1/m,2) ∈
U ′ and this contains all the other sets from U ′. But (1/m,2) does not contain (0,1].

Example: The set [0,1] is compact. But rather than prove this explicitly, we’ll just
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prove the following theorem.

Theorem 6.6: Heine-Borel

The following are equivalent for a set A ⊆R:

1. A is closed and bounded,

2. S is sequentially compact, and

3. A is compact.

Proof. We’ve already established the equivalence of (1) and (2). So now let’s prove

that they are equivalent to (3).

First, we’ll show that (3) implies (1). So suppose A is compact. Let x ∈ Ac , and

consider the open sets (−∞, x −1/n)∪ (x +1/n,∞) with n ∈N. The union of these

open sets is R \ {x} which contains A. So these sets form an open cover of A and

hence have a finite subcover. But these sets are growing in size, and so the finite

subcover can be reduced to the largest set in it, which means there is some n such

that A ⊆ (−∞, x −1/n)∪ (x +1/n,∞). Thus (x −1/n, x +1/n) ⊆ Ac , and since x was

arbitrary, this shows that Ac is open, and A is closed. In addition, the sets (−n,n)

with n ∈N form an open cover of R and hence of A. A finite subcover must contain

some largest (−n,n) which in turn contains A, which shows that A is bounded.

Now let’s show that (1) implies (3). So suppose that U is an open cover of a closed

and bounded set A ⊆ [−M , M ]. We define the following process. Initially, we set

A1 = A and I1 = [−M , M ]. We assume that A1 cannot be covered by a finite subset

of U , or else we’d be done. At stage j , we have an interval I j = [l j ,r j ] and a set

A j ⊆ A j−1 such that A j cannot be covered by a finite subset of U . We split the

interval I j in half at the midpoint to get two intervals I l
j and I r

j , each half as long

as I j . Then A j gets split in half as Al
j = A j ∩ I l

j and Ar
j = A j ∩ I r

j . Since A j cannot

be covered by a finite subset of U , the same must be true of either Al
j or Ar

j (if each

could be covered by a finite subset of U , combining these two finite subsets would

produce a, possibly larger, finite subset of U which covered all of A j ). We set A j+1

to be whichever of Al
j or Ar

j cannot be covered, and I j+1 to be the corresponding

half of I j . In this way, we produce a decreasing sequence of sets A j+1 ⊆ A j ⊆ A

and a decreasing sequence of intervals I j+1 ⊆ I j , such that the intervals I j+1 are

half as long as their predecessor. Now, each A j+1 has to be non-empty (or else it

would certainly be covered by a finite subset of U ), so choose some element of A j

for each j to produce a sequence {a j }. Because A is closed and bounded, we can

pass to a subsequence {a jk } which converges to some a ∈ A (because A is closed).

Now a ∈ A means that there is some U ∈ U which contains it – after all, U covers
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all of A. Since U is open, there is some ε > 0 such that (a − ε, a + ε) ⊆ U . Let j be

so large that |a j − a| < ε/2 and such that I j has length at most ε/4 (this is possible

since the length of I j is at most 2M/2 j , having been halved at each step). Let’s now

take stock: a j ∈ A j ⊆ I j and |a j − a| < ε/2. But the endpoints of I j = [l j ,r j ] are at

most ε/4 away from a j . So

|l j −a| ≤ |l j −a j |+ |a j −a| < 3ε/4 < ε

and similarly |r j −a| < ε. This means that

A j ⊆ I j ⊆ (a −ε, a +ε) ⊆U ,

and so A j can be covered by a single subset of U , a contradiction.
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7
CONTINUITY

7.1 Continuous Limits

Recall that a sequence is really just a function a : N→ R which we usually write

as a(n) = an , and we write limn→∞ an = L if an = a(n) is within ε of L for all n

sufficiently “close" to ∞. This is exactly the same for continuous limits.

Definition 7.1: Limit

If f is a function defined on an interval surrounding a then we write

lim
x→a

f (x) = L

if for each ε> 0, there is a δ> 0 such that we have | f (x)−L| < ε for all x with

|x −a| < δ, save for possibly x = a
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Definition 7.2: One sided limit

If f is a function defined on an interval with left endpoint at a then we write

lim
x→a+ f (x) = L

if for each ε> 0, there is a δ> 0 such that we have | f (x)−L| < ε for all x with

a < x < a +δ. Similarly, if f is a function defined on an interval with right

endpoint at a then we write

lim
x→a− f (x) = L

if for each ε> 0, there is a δ> 0 such that we have | f (x)−L| < ε for all x with

a −δ< x < a.

Definition 7.3: Continuity

We say f is continuous at a if limx→a f (x) = f (a). We say f is continuous on

A if for each a ∈ A, f is continuous at a.

Unravelling the definition, we see that f is continuous at a if for each ε> 0 there

is some δ > 0 such that |x − a| < δ tells us that | f (x)− f (a)| < ε. Notice that in this

definition, the parameter δ depends implicitly on ε and on a. This is necessarily

the case.

Example: The function x 7→ x2 is continuous on all of R. Indeed, for a ∈ R and

|x −a| < δ we have

|x2 −a2| = |x −a||x +a| < δ(|x|+ |a|)
and

|x| ≤ |x −a|+ |a| ≤ δ+|a|
so that

|x2 −a2| ≤ δ(δ+2|a|)
and this can be made at most εby takingδ sufficiently small. Indeed, ifδ< min{

p
ε/2,ε/4|a|}

then

δ(δ+2|a|) = δ2 +2δ|a| < ε/2+ε/2 < ε.

Example: We have limx→0 sin(x)/x = 1. Indeed if ε > 0 we shall show that 1−
ε < sin(x)/x < 1 as x → 0 from the right, the left hand following from the fact that

sin(x)/x is even. Now sin(x) < x for all positive x, while for x sufficiently small, we

have cos(x) ≤ sin(x)/x. However,

cos(x) =
√

1− sin(x)2 ≥
√

1−x2 >p
1−x ≥

p
1−δ,
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if 0 < x < δ. Thus

1− sin(x)

x
≤ 1−

p
1−δ= 1− (1−δ)

1+p
1−δ

≤ δ.

So if δ= ε, we have 1−ε< sin(x)/x < 1 as required.

7.2 Other characterizations of continuity

Definition 7.4: Image and preimage

If f : X → Y is a function and A ⊆ X then

f (A) = { f (a) : a ∈ A}

is the image of A under f . If B ⊆ Y then

f −1(B) = {x ∈ X : f (x) ∈ B}

is the preimage (or inverse image) of B .

Theorem 7.1: Continuity from topology

A function f is continuous if and only if for any open set U ,

Proof. Suppose f is continuous. If U is open, let x ∈ f −1(U ), which is to say f (x) ∈
U . Then there is some ε > 0 such that ( f (x)− ε, f (x)+ ε) ⊆ U as well, since U is

open. There is some δ > 0 such that | f (x) − f (y)| < ε when |x − y | < δ. That is

to say, if y ∈ (x − δ, x + δ) then f (y) ∈ ( f (x) − ε, f (x) + ε) ⊆ U , which means that

(x −δ, x +δ) ⊆ f −1(U ).

Conversely, suppose the inverse image of any open set is open. Then if ε> 0, the

inverse image of ( f (x)−ε, f (x)+ε) is open, and it contains x. So there is some δ> 0

such that (x−δ, x+δ) ⊆ f −1(( f (x)−ε, f (x)+ε)), which means that |x−y | < δ implies

f (y) ∈ ( f (x)−ε, f (x)+ε) which is the definition of continuity.

Another characterization of continuity concerns sequences.

Theorem 7.2

The function f defined on an interval around a is continuous at a if and only

if whenever {an} is a sequence converging to a (but distinct from a) and con-

tained in the domain of f , we have f (an) → f (a)

Proof. Suppose f is continuous at a and let ε> 0. Let δ> 0 be such that |x −a| < δ
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implies | f (x)− f (a)| < ε, and let N be so large that |an − a| < δ for n > N . Then

| f (an)− f (a)| < ε and this shows that f (an) → f (a).

Conversely, if f is not continuous at a then there is some ε > 0 such that for no

δ> 0 do we have |x −a| < δ implies | f (x)− f (a)| < ε. This means that if we attempt

δ = 1/n, for each n ∈ N, there will always be some number an with |an − a| < 1/n

but | f (an)− f (a)| > ε. By construction an → a but f (an) ̸→ f (a), so the sequence

condition also fails.

The previous characterization of continuity is the exact same as the following.

Theorem 7.3: Composition and continuity

Suppose f is continuous at a and g is continuous at f (a). Then g ◦ f is con-

tinuous at a.

Proof. Let ε> 0 and let δg > 0 be such that |g (y)−g ( f (a))| < εwhenever |y− f (a)| <
δg . Next, let δ f be such that | f (x)− f (a)| < δg whenever |x−a| < δ f . Then if |x−a| <
δ f we have |g ( f (x))− g ( f (a))| < ε, showing continuity of g ◦ f at a.

7.3 Algebraic properties of continuity

Theorem 7.4

Suppose that f and g are two functions defined in an interval around a, and

each is continuous at a. Then so is f + g , f g and f /g provided g (a) ̸= 0.

Proof. We just show the product is continuous, the others are left as an exercise. So

let ε> 0 and suppose we know |x −a| < δ. Then

| f (x)g (x)− f (a)g (a)| = | f (x)g (x)− f (a)g (x)+ f (a)g (x)− f (a)g (a)|
≤ | f (x)g (x)− f (a)g (x)|+| f (a)g (x)− f (a)g (a)| ≤ |g (x)|| f (x)− f (a)|+| f (a)||g (x)−g (a)|.

Ifδ is sufficiently small, we can guarantee that |g (x)−g (a)| < ε/(2| f (a)|), that |g (x)| <
|g (a)|+1 and that | f (x)− f (a)| < ε/2(|g (a)+1), all of which in turn guarantees that

| f (x)g (x)− f (a)g (a)| < ε.
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7.4 Continuity and compactness

Theorem 7.5

Let f : R→ R be a continuous function and let C be a compact set. Then on

C , f is uniformly continuous.

Proof. Let ε > 0. By continuity, for a ∈ C , there is some δa > 0 such that whenever

b ∈C and |b−a| < δa , we have | f (b)− f (a)| < ε/2. Let Ia = (a−δa/2, a+δa/2). Then

Ia is an open interval and a ∈ Ia . Let U = {Ia : a ∈ C }, which is an open cover of C .

By compactness, there is a finite subcover U ′ = {Ia1 , . . . , Ian }. Now suppose a,b ∈C

are arbitrary, and |a −b| < δ where

δ= min{δa1 /2, . . . ,δan /2} > 0.

Then, since U ′ is a cover, a ∈ Ia j for some j , which we may assume to be 1, which

means

|a −a1| < δa1 /2 < δa1 .

Since |b −a| < δa1 /2, we have

|b −a1| ≤ |b −a|+ |a −a1| ≤ 2δa1 /2 = δa1

and, since both a and b are within δa1 of a1, we have

| f (b)− f (a)| ≤ | f (b)− f (a1)|+ | f (a1)− f (a)| < 2ε/2 = ε.

Theorem 7.6

Let f : R→ R be continuous and let C be a compact set. Then f (C ) is also

compact.

Proof. Let U be an open cover of f (C ). Then V = { f −1(U ) : U ∈U } consists of open

sets by continuity, thus forming an open cover of C , by the definition of inverse

image. Since C is compact, V has a finite subcover V ′ = { f −1(U1), . . . , f −1(Un)}. The

sets {U1, . . . ,Un} form an open cover of f (C ), which is a finite subcover of U .

Lemma 7.1

Let C be compact, then C contains a maximal and minimal element.

Proof. We just prove the result for a maximal element, the minimal element is sim-

ilar. By compactness, C is bounded, so M = sup(C ) exists. If M ̸∈ C then the sets
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(−∞, M −1/n) with n ∈N form an open cover of C which cannot have a finite sub-

cover – the sets are increasing, so a finite subcover would mean that (−∞, M −1/n)

contains C for some n. But that would mean M −1/n is an upper bound for C , a

contradiction.

Corollary 7.1: Extreme Value Theorem

Let f : C →R be a continuous function, where C is compact. Then f attains a

maximum and minimum value.

Proof. We know that f (C ) is compact, and so contains maximal and minimal ele-

ments.

Theorem 7.7: Intermediate Value Theorem

Suppose A is a connected set and f : A → R is continuous. Then f (A) is also

connected. Hence f ([a,b]) is an interval, and contains all numbers between

f (a) and f (b).

Proof. If U ,V form a disconnecting pair of sets for f (A) then f −1(U ) and f −1(V )

form a disconnecting pair of sets for A, which was assumed to be connected.

In the previous theorems, we insisted on a function f which is continuous on all

of R, not just C . This is only to avoid technicalities in the proofs in dealing with

boundary points – if we have open sets U containing C , then f −1(U ) may not be

open as a subset of R, and we need to use something called the subspace topology,

which is beyond the scope of this course. For the most part, one can use sequences

instead for easy alternative proofs, which avoid these technicalities. These are more

real analysis than topology, which is appropriate for this course, but I wanted to

emphasize the role played by topology here.
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8
DIFFERENTIABILITY

8.1 Basics of differentiability

Definition 8.1: Differentiability at a point

A function f , defined on an interval around a number a, is said to be differ-

entiable at a if

lim
h→0

f (a +h)− f (a)

h

exists. In that case, the limit is called the derivative of f at a and denoted

f ′(a).

Example: The function x2 is everywhere differentiable with derivative 2x. Indeed,

at the point a,
(a +h)2 −a2

h
= 2a +h

which plainly converges to 2a as h → 0.

An alternative characterization of differentiability is this: the function f is differ-

entiable at a if and only if there is a number f ′(a) and a function ea(x) such that

f (x) = f (a)+ f ′(a)(x −a)+ea(x)
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and ea(x)/(x −a) → 0 as x → a. Indeed, we merely define

ea(x) = f (x)− f (a)− f ′(a)(x −a)

and observe that
ea(x)

x −a
= f (x)− f (a)

x −a
− f ′(a)

and the right hand side tends to zero as x → a.

This alternate characterization is particularly useful in applications.

Lemma 8.1

If f is differentiable at a then it is continuous at a.

Proof. From our alternate characterization

f (x) = f (a)+ (x −a)

(
f ′(a)+ ea(x)

x −a

)
and the second term on the right tends to 0 as x → a.

Continuity alone is, however, far from sufficient.

Example: The function |x| is not differentiable at 0.

Proof. We have

f (0+h)− f (0)

h
=

1 if h > 0

−1 if h < 0.

Thus the left and right hand limits as h → 0 are distinct and so the limit does not

exist.

Here are a few more familiar rules from calculus.

Theorem 8.1: Product Rule

If f and g are each differentiable at a then so is f g and its derivative is

f ′(a)g (a)+ g ′(a) f (a).

Proof. We use the alternate characterization,

f (x)g (x) = (
f (a)+ f ′(a)(x −a)+e f ,a(x)

)(
g (a)+ g ′(a)(x −a)+eg ,a(x)

)
= f (a)g (a)+ ( f ′(a)g (a)+ g ′(a) f (a))(x −a)+

+ (
e f ,a(x)

(
g (a)+ g ′(a)(x −a)+eg ,a(x)

)+eg ,a(x)
(

f (a)+ f ′(a)(x −a)
))

and the final expression in brackets when divided by x −a tends to 0 as x → a.
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Theorem 8.2: Chain Rule

If f is differentiable at a and g is differentiable at f (a) then g ◦ f is differen-

tiable at a and its derivative is g ′( f (a)) f ′(a).

Proof. Again we use the alternate characterization,

f (x) = f (a)+ f ′(a)(x −a)+e f ,a(x), g (y) = g ( f (a))+ g ′( f (a))(y − f (a))+eg , f (a)(y).

Set y = f (x), then since f is, in particular, continuous at a, y → f (a) as x → a. Thus,

g ( f (x)) = g ( f (a))+ g ′( f (a))( f (x)− f (a))+eg , f (a)( f (x))

and writing f (x)− f (a) = f ′(a)(x −a)+e f ,a(x), we get

g ( f (x)) = g ( f (a))+ g ′( f (a)) f ′(a)(x −a)+ (
g ′( f (a))e f ,a(x)+eg , f (a)( f (x))

)
.

The error term in brackets, when divided by x −a is

e f ,a(x)

x −a
g ′( f (a))+ f (x)− f (a)

x −a

eg , f (a)( f (x))

f (x)− f (a)

which tends to 0 as x → a.

8.2 Derivatives and local behaviour

Lemma 8.2

Suppose f is differentiable at a. If f ′(a) > 0 then f is increasing in an interval

around a, while if f ′(a) < 0 then f is decreasing in an interval around a.

Proof. Suppose f ′(a) > 0 and x is sufficiently close to a. Since

f (x) = f (a)+ f ′(a)(x −a)+ea(x)

we can choose x so close to a that ea(x) < |x −a| f ′(a)/2. Then

f (x)− f (a) = f ′(a)(x −a)

(
1+ ea(x)

(x −a) f ′(a)

)
and the quantity in brackets has to be positive, since it’s at least 1/2. From this we

see that the sign of f (x)− f (a) and the sign of x −a are the same, which means f is

increasing. A similar proof works when f ′(a) < 0.

Corollary 8.1

Suppose f is differentiable on the interval (a,b) and there is a local maximum

or minimum at some c ∈ (a,b). Then f ′(c) = 0.

57



Proof. Local extrema occur when f changes from increasing to decreasing or vice

versa. Since c is a local extremum, f ′ cannot be increasing at c, so f ′(c) > 0 is im-

possible. Similarly f cannot be decreasing at c, so f ′(c) < 0 is impossible.

Theorem 8.3: Rolle’s Theorem

Suppose f is differentiable inside the interval [a,b], continuous at the end-

points, and such that f (a) = f (b). Then there is a number c ∈ (a,b) for which

f ′(c) = 0.

Proof. The function f is continuous on the compact interval [a,b] and so achieves

a maximum and minimum value. If both of these occur at the endpoints then f

has to be constant, and so f ′ = 0 everywhere. So we can assume that f has a local

extremum c inside (a,b) and there we must have that f ′(c) = 0.

Corollary 8.2: The Generalized Mean Value Theorem

Suppose f and g are differentiable functions on the open interval (a,b) which

are continuous at the endpoints a and b. Then there is a point c ∈ (a,b) for

which

f ′(c)(g (b)− g (a)) = g ′(c)( f (b)− f (a)).

Proof. Consider the differentiable function

h(x) = f (x)(g (b)− g (a))− g (x)( f (b)− f (a)).

Then

h(a) = f (a)g (b)− g (a) f (b) = h(b)

and so by Rolle’s Theorem, we find a c for which

h′(c) = f ′(c)(g (b)− g (a))− g ′(c)( f (b)− f (a)) = 0

and the theorem follows.

8.3 Taylor’s Theorem

We close the course with a very useful approximation theorem which lets us re-

place any sufficiently nice function with a polynomial, at least when close to a given

point.
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Theorem 8.4: Taylor’s Theorem with remainder

Suppose f is a function which is N +1-times differentiable on (a −R, a +R).

Then for any t in this interval, there is a number c between a and t for which

f (t ) =
N∑

n=0

f (n)(a)

n!
(t −a)n + f (N+1)(c)

(N +1)!
(t −a)N+1.

Proof. We set

E(x) = f (x)−
N∑

n=0

f (n)(a)

n!
(x −a)n

and check that

E n(a) = 0, 0 ≤ n ≤ N

and

E N+1(x) = f (N+1)(x).

Iteratively, we apply the Generalized Mean Value Theorem as follows. Start with the

functions E(x) and (x −a)N+1 at the points a and t . This tells us that

E(t )

(t −a)N+1
= E(t )−E(a)

(t −a)N+1 − (a −a)N+1
= E ′(t1)

(N +1)(t1 −a)N
.

At stage n we apply this same strategy to functions E (n−1)(x) and (x − a)N+2−n the

points a and tn−1 and get a point tn between tn−1 and a such that

E (n)(tn−1)

(tn −a)N+2−n
= E (n+1)(tn)

(N +2−n)(tn −a)N+1−n
.

We do this until n = N +1 at which point we get a number tN+1 between x and a for

which
E (N )(tn)

tN −a
= E (N+1)(tN+1) = f (N+1)(tN+1).

We iteratively substitute back to get

E(t )

(t −a)N+1
= f (N+1)(tN+1)

(N +1)!

and then

f (t ) =
N∑

n=0

f (n)(a)

n!
(t −a)n +E(t ) =

N∑
n=0

f (n)(a)

n!
(t −a)n + f (N+1)(tN+1)

(N +1)!
(t −a)N+1
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8.4 Application: Liouville’s Theorem and Diophantine Approxima-

tion

We have seen that not all real numbers are rational, but that nonetheless, all real

numbers can be approximated by rational ones. How do we measure the accuracy

of such an approximation. Well, the numbers

1

q
·Z= {a/q : a ∈Z}

where q ∈ N is a fixed denominator form a sort of ruler with tick marks at incre-

ments of length 1/q . Any real number α lies between two such marks, and so we

recover the density of rationals in the following form.

Lemma 8.3

Let q be a positive integer and α ∈R. Then there is an integer a ∈Z satisfying∣∣∣α− a
q

∣∣∣≤ 1
2q .

The approximation above cannot be improved since for any q , the number 1
2q is

best approximated by the fractions 0/q and 1/q . Thus the above serves as a base-

line level of accuracy and improvements are naturally measured in terms of the

denominator q .

For a rational number α= r /s, there is one very good approximation, namely r /s

itself, but there are in fact no others. Indeed if a/q is a rational number not equal to

r /s then sa − r q is a non-zero integer, and hence |sa − r q | ≥ 1, from which we find∣∣∣∣ a

q
− r

s

∣∣∣∣= |sa − r q |
sq

≥ 1

s
· 1

q
.

Now s is a constant which depends only on α, namely its denominator when α is

expressed as a reduced fraction. So we can view 1/s as a constant which depends

on α only, and we have drawn the following conclusion.

Lemma 8.4

For any rational numberα, there is a constant cα such that any rational num-

ber a/q which is distinct from α satisfies∣∣∣∣α− a

q

∣∣∣∣≥ cα
q

.

It turns out that the quality of being rational is the only hurdle to a substantial

improvement in the accuracy of approximation to α by other fractions a/q .
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Lemma 8.5: Dirichlet Approximation

Let α be an irrational real number. Then there are infinitely many distinct

fractions a/q which satisfy ∣∣∣∣α− a

q

∣∣∣∣< 1

q2

Proof. Let N be a positive integer, and consider the N + 1 real numbers qα with

0 ≤ q ≤ N . Each such number can be written as qα = nq + rq where nq ∈ Z and

rq ∈ [0,1) are obtained by letting nq be the unique integer satisfying nq ≤ qα< nq+1

and rq = qα−nq . There are N +1 values of rq ∈ [0,1) as q varies from 0 to N and

thus there must be two distinct integers q1 and q2, say with 0 ≤ q1 < q2 ≤ N and

with the property that

|rq1 − rq2 | < 1/N . (1)

If q1 and q2 are such integers, then

α(q2 −q1) =αq2 −αq1 = (nq2 −nq1 )+ (rq2 − rq1 ).

We set a = nq2 −nq1 which is an integer, and q = q2 −q1 which is a positive integer,

and which does not exceed N . We set r = rq2 − rq1 which satisfies |r | < 1/N by (1).

With this notation, the above rearranges to

αq = a + r =⇒ α= a

q
+ r

q

and so ∣∣∣∣α− a

q

∣∣∣∣= |r |
q

< 1

N q
.

For each N ∈Nwe apply this process and obtain a fraction aN /qN nearα. However,

since α is irrational, we must have εN = |α−aN /qN | > 0. If M so large that 1
M < εN ,

then it cannot be that aM /qM = aN /qN since∣∣∣∣α− aM

qM

∣∣∣∣< 1

M qM
≤ 1

M
< εN =

∣∣∣∣α− aN

qN

∣∣∣∣ .

Hence the sequence {aN /qN } contains infinitely many distinct fractions. Finally,

we note that ∣∣∣∣α− aN

qN

∣∣∣∣< 1

N qN
≤ 1

q2
N

since qN ≤Q.

Just as in the case of rational numbers only having one very good approximation,

it is also true that certain other numbers cannot be approximated much better than

what is promised by Dirichlet’s Theorem. Indeed,
p

2 is such a number: if a/q is a

fraction, then either a/q ∈ (0,2
p

2) or else∣∣∣a/q −p
2
∣∣∣≥ 1 ≥ 1

q
.

61



But if 0 < a/q < 2
p

2 then∣∣∣a/q −p
2
∣∣∣= ∣∣(a/q −p

2)(a/q +p
2)

∣∣
a/q +p

2
=

∣∣a2/q2 −2
∣∣

a/q +p
2

≥
∣∣a2/q2 −2

∣∣
3
p

2
= |a2 −2q2|

3
p

2q2
.

Again, since a2 −2q2 is a non-zero integer, we must have |a2 −2q2| ≥ and we con-

clude that for all fractions a/q , we have∣∣∣a/q −p
2
∣∣∣≥ c

q2

where, in this case, c = 1
3
p

2
.

The key property we have used here is that
p

2 is a root of the polynomial x2−2 = 0,

but a/q is not. We can exploit this property more generally.

Definition 8.2: Algebraic and transcendental numbers

A real (or complex) number α is said to be algebraic if there is a non-zero

polynomial f (x) whose coefficients are rational numbers and which has α as

a root. If a number is not the root of any non-zero polynomial with rational

coefficients, then we call it transcendental.

Lemma 8.6: Existence of minimal polynomial

If α is a real algebraic number then there is a polynomial mα(x) with integer

coefficients which has α as a root and with the property that if f (x) is any

other polynomial with rational coefficients, then either f (α) ̸= 0 or else f has

degree larger than that of mα.

Proof. Consider the set

S = {degm(x) : m(x) is a polynomial with rational coefficients and m(α) = 0}

which is non-empty since α is a root of some polynomial with rational coefficients.

By the well-ordering property, S has a least element d which is the degree of some

polynomial m(x). The polynomial m(x) has rational coefficients, but we can multi-

ply it by a constant (the lowest common denominator of the coefficients) to ob-

tain a polynomial mα(x) which has integer coefficients and still has degree dα.

Now suppose f (x) is any other polynomial with rational coefficients. If f (α) = 0

then deg f (x) ∈ S, and since dα was the minimal element of S, it mush be that

deg f (x) ≥ dα, as required.

The next useful fact generalizes our above analysis of
p

2, where mp
2(x) = x2 −2

which does not have a/q as a root.
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Lemma 8.7

If α is an algebraic number which is not rational then

|mα(a/q)| ≥ 1

qdegmα(x)

for all fractions a/q .

Proof. First we show that mα(a/q) ̸= 0. Indeed, consider the Taylor expansion of

mα around a/q :

mα(x) =
degmα∑

k=0

m(k)
α (a/q)

k !
(x −a/q)k .

If mα(a/q) = 0 then the k = 0 term vanishes, so we have

mα(x) = (x −a/q)
degmα−1∑

k=0

m(k+1)
α (a/q)

(k +1)!
(x −a/q)k .

But if we set

g (x) =
degmα−1∑

k=0

m(k+1)
α (a/q)

(k +1)!
(x −a/q)k

then g (x) is a polynomial of degree degmα−1 and its coefficients are also rational,

since the expressions m(k+1)
α (a/q)
(k+1)! are rational (as the reader should verify), and the

expressions (x −a/q)k can be expanded, using the binomial theorem, into polyno-

mials in x with rational coefficients. We have

mα(x) = (x −a/q)g (x)

and so

0 = mα(α) = (α−a/q)g (α)

and since α is not rational, we must have g (α) = 0 which is impossible since g has

rational coefficients and degree smaller than dα.

Now that we know mα(a/q) ̸= 0 let’s analyze it more precisely. It has integer coef-

ficients, say

mα(x) = a0 +a1x +·· ·+ad xd

where ai ∈Z and d = degmα. Plugging in a/q yields

mα(a/q) = a0 +a1
a

q
+·· ·+ad

ad

qd
= a0qd +a1aqd−1 +·· ·+ad ad

qd
.

The numerator is an integer and cannot be zero, so it must have absolute value at

least 1. As such

|mα(a/q)| =
∣∣a0qd +a1aqd−1 +·· ·+ad ad

∣∣
qd

≥ 1

qd
.
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Theorem 8.5: Liouville’s Theorem

Letα be an irrational, real algebraic number with minimal polynomial mα(x)

having degree d . Then there is a constant cα > 0 which depends only on α

and for which all fractions a/q satisfy∣∣∣∣α− a

q

∣∣∣∣≥ cα
qd

.

Proof. Let a/q be a fraction with the property that |a/q −α| ≤ 1. All other fractions

have ∣∣∣∣α− a

q

∣∣∣∣≥ 1 ≥ 1

qd

anyway, so we can just be sure to take cα < 1. Let

M = sup
x∈[α−1,α+1]

|m′
α(x)|

which is finite since it is the supremum of a continuous function on a compact set.

Note that M depends only on α and the polynomial mα, which ultimately depends

on α too. By the Mean Value Theorem,

mα(a/q)−mα(α)

a/q −α = m′
α(t )

for some t ∈ [α−1,α+1] and so (since mα(α) = 0

|mα(a/q)|
|a/q −α| ≤ M .

On the other hand, Lemma (8.4) tells us that

|mα(a/q)| ≥ 1/qd ,

so we conclude ∣∣∣∣ a

q
−α

∣∣∣∣≥ 1

M
· 1

qd

and we finish the theorem by setting cα = 1
2+M .

Corollary 8.3: Construction of a transcendental number

The number

α=
∞∑

n=1

1

2n!

is transcendental.
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Proof. The idea that thatα is very well approximated by fractions, namely its partial

sums. Let

SN =
N∑

n=1

1

2n!
= 1

2N !

N∑
n=1

2N !−n!

which is a reduced fraction with denominator qN = 2N ! (note that the numerator

aN = ∑N
n=1 2N !−n! is odd since all summands but for when n = N are powers of 2).

Furthermore,

α−SN =
∞∑

n=N+1
2−n! = 2−(N+1)!

∞∑
n=N+1

2− n!
(N+1)! ≤ 2−(N+1)!

∞∑
n=N+1

2−(n−N−1) = 2

2(N+1)N !

and we note that this is just 2
(qN )N+1 . But SN = aN

qN
and we have just shown that∣∣∣∣α− aN

qN

∣∣∣∣≤ 2

q N+1
N

.

If α were algebraic, then there would be a constant cα and a positive integer d for

which ∣∣∣∣α− aN

qN

∣∣∣∣≥ cα

qd
N

,

but since qN = 2N ! →∞ as N →∞, this clearly cannot hold.
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9
THE RIEMANN INTEGRAL

We now come to one of the most essential notions in analysis, integration. This is

a theory concerned with formalizing the notion of integral most students learn in

calculus. Our aim is threefold: to give a rigorous treatment of integration, to un-

derstand for which functions the notion of an integral is sensible, and when the

integral is defined, to have a useful strategy in evaluating it. The second goal in-

volves an investigation into Riemann integrability, while the third amounts to the

Fundamental Theorem(s) of Calculus.

9.1 Defining the integral

As with most treatments of the Riemann integral, we will approximate the area be-

tween the x-axis and the graph of a function f by rectangles. Since the process is

done through approximation, we need to ensure this can be done to a satisfactory

level of accuracy and precision. As is often the case, by being a little more flexible

in the way we define the integral, we will end up with arguments which are a little

more straightforward.

To begin, we will need a function which we want to integrate. Suppose f is that

function. To keep things reasonably simple, we will assume that we are going to

integrate f over a bounded interval I , and that the function f is bounded on I – this
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is not such a severe limitation of our treatment, but does free us from complications

invited by letting things be infinite.

Definition 9.1: Partition of an interval

Let I be a bounded interval with endpoints a and b such that a ≤ b, each of

which may or may not be included in I . Then a partition of I is a set of points

P ⊆ [a,b] such that

1. P is finite,

2. a,b ∈ P .

The partition P can be placed in order as P = {a = p0 < p1 < . . . < pn = b}. The

intervals [pi , pi+1] are subintervals of I which will serve as the bases for our rectan-

gles.

Definition 9.2: Upper and lower estimates

Let I be a bounded interval, f : I →R a bounded function, and suppose

P = {a = p0 < p1 < . . . < pn = b}

is a partition of I . Then the upper and lower Riemann sums of f with respect

to P are (respectively)

U f (P ) =
N∑

j=1
(p j+1 −p j ) sup

x∈(p j ,p j+1)
f (x),

and

L f (P ) =
N∑

j=1
(p j+1 −p j ) inf

x∈(p j ,p j+1)
f (x).

The quantities U f (P ) and L f (P ) represent the sums of areas of rectangles, the j ’th

of which has base (p j+1 − p j ) and heights supx∈(p j ,p j+1) f (x) and infx∈(p j ,p j+1) f (x)

respectively. The lower Riemann sums should underestimate and the upper sums

should overestimate, which hints at the following lemma.

Lemma 9.1

Let f be a bounded function on a bounded interval I and let P be a partition

of I . Then U f (P ) ≥ L f (P ).
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Proof. Let’s say P = {p0 < . . . < pN }. Then the difference between the two is

U f (P )−L f (P ) =
N∑

j=1
(p j+1 −p j )

(
sup

x∈(p j ,p j+1)
f (x)− inf

x∈(p j ,p j+1)
f (x)

)
.

The terms p j+1 −p j are positive, while

sup
x∈(p j ,p j+1)

f (x)− inf
x∈(p j ,p j+1)

f (x)

is non-negative.

Definition 9.3: Refinement of a partition

We say a partition P ′ of an interval I refines a partition P of I if P ⊆ P ′.

The intuition is that if P ′ is larger than P , we have introduced elements of P ′ into P

which can now serve as endpoints of the base intervals, thus splitting base intervals

of P into subintervals. By doing so, our overestimating and underestimating of the

area in question becomes less crude. This is the content of the following lemma.

Lemma 9.2

If P ′ refines P then U f (P ′) ≤U f (P ) and L f (P ′) ≥ L f (P ).

Proof. If P = P ′ there is nothing to show, so suppose P = {p0 < . . . < pN } and P ′ =
P ∪ {p∗} for some new point p∗. Then p∗ lies in [p0, pN ] and so lies between some

consecutive elements of P , say p∗ ∈ (p j , p j + 1). Let Mi = sup(pi ,pi+1) f and mi =
inf(pi ,pi+1) f . Then

U f (P ) =
N∑

i=1
(pi+1 −pi )Mi ,

and

L f (P ) =
N∑

i=1
(pi+1 −pi )mi .

Meanwhile, if we set M ′ = sup(p j ,p∗) f and M ′′ = sup(p∗,p j+1) f then both M ′ and M ′′

are smaller than M j . Thus

U f (P ′) =
j−1∑
i=1

(pi+1 −pi )Mi + (p∗−p j )M ′+ (p j+1 −p∗)M ′′+
N∑

i= j+1
(pi+1 −pi )Mi

≤
j−1∑
i=1

(pi+1 −pi )Mi + (p∗−p j )M j + (p j+1 −p∗)M j +
N∑

i= j+1
(pi+1 −pi )Mi

=U f (P ).
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Defining m′ = inf(p j ,p∗) f and m′′ = inf(p∗,p j+1) f we find m,m′′ ≥ m j and the same

argument shows L f (P ′) ≥ L f (P ).

We have now shown the desired conclusion when P ′ has only one more point than

P . The result when P ′ involves more than one extra point is deduced from what we

have just shown by introducing these points one at a time.

Corollary 9.1

Let f : I → R be bounded function on a bounded interval I . If P1 and P2 are

any partitions of I then L f (P1) ≤U f (P2).

Proof. Let P = P1 ∪P2, which refines both P1 and P2. Then by Lemmas 9.1 and 9.1

L f (P1) ≤ L f (P ) ≤U f (P ) ≤U f (P2).

Corollary 9.2

Let f : I → [m, M ] be a function bounded above by M and below by m. If the

endpoints of I are a and b then for any partition P , U f (P ) ≤ M(b − a) and

L f (P ) ≥ m(b −a).

Proof. The partition P has to refine P0 = {a,b}, since all partitions must contain the

endpoints. But U f (P0) ≤ M(b −a) and L f (P0) ≥ m(b −a).

As a result of these two corollaries, we deduce the following.

Lemma 9.3

For any bounded function f : I →R on a bounded interval I ,

U f = inf{U f (P ) : P partitions I }

and

L f = sup{L f (P ) : P partitions I }

are finite and satisfy U f ≥ L f .

Proof. Since f is bounded say m ≤ f (x) ≤ M on I , and I is bounded, say of length

b −a, the set {U f (P ) : P partitions I } is bounded below by L f ({a,b}) ≥ m(b −a) and

the set we find that for any partition P , then

U f (P ) ≥ L f (P ) ≥ m(b −a)
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so

U f ≥ m(b −a)

as well. Similarly

L f (P ) ≤U f (P ) ≤ M(b −a),

thus showing that U f and L f are finite. But in fact, if P ′ is any partition of I then

U f (P ) ≥ L f (P ′)

hence taking the infimum over P , we find

U f ≥ L f (P ′),

Taking the supremum over P ′, we find

U f ≥ L f .

Definition 9.4: Riemann integrability and the integral

If f : I → R is a function on a bounded interval I , we say f is Riemann inte-

grable if it is bounded and if U f = L f . In that case, we write∫ b

a
f =U f = L f ,

and define this number to be the Riemann integral of f over I .

9.2 Integrability and examples

In practice, we will use the following version of Riemann integrability. From now

on, we shall just say integrable, and when f is integrable, we refer to its integral.

Lemma 9.4

A function f : I → R on a bounded interval I is integrable if and only if it

is bounded and for any ε > 0, there is a partition P of I with the property

U f (P )−L f (P ) < ε.

Proof. If f is integrable, then U f and L f are equal. Approximating each, we get

partitions P1 and P2 such that U f (P1) ≤U f +ε/2 and L f (P2) ≥ L f −ε/2. Refining to

P = P1 ∪P2, we have

U f (P )−L f (P ) ≤U f (P1)−L f (P2) ≤ (U f +ε/2)− (L f −ε/2) = ε.
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Conversely given ε> 0, if such a partition exists, then

U f −L f ≤U f (P )−L f (P ) < ε.

Since such P is supposed to exist for all ε> 0 we are left to conclude U f −L f ≤ 0. By

Lemma 9.1, we have U f = L f .

Example: If f ≡ c is constant then it is integrable over any bounded interval and∫ b
a f = (b −a)c. Indeed,

c(b −a) =U f ({a,b}) ≥U f ≥ L f ≥ L f ({a,b}) = c(b −a),

and so equality holds throughout.

Example: The function

1Q(x) =
1 x ∈Q,

0 x ̸∈Q
is bounded, but not integral over any interval of positive length. Indeed, if P is a

partition of an interval, then inf[pi ,pi+1 1Q = 0 while sup[pi ,pi+1
1Q = 1 by the density

of irrationals and rationals, respectively. Hence

U f (P ) =
N−1∑
i=1

(xi+1 −xi ) sup
[pi ,pi+1

1Q = b −a

while

L f (P ) =
N−1∑
i=1

(xi+1 −xi ) inf
[pi ,pi+1

1Q = 0.

Lemma 9.5

If f : I →R is uniformly continuous on the bounded interval I then f is inte-

grable.

Proof. For any δ> 0, we may divide I into finitely many intervals, each of length at

most δ. Since f is uniformly continuous, there is a δ> 0 such that | f (x)− f (y)| < 1

whenever |x−y | < δ. Hence if I is covered by N such intervals, then sup f −inf f ≤ N ,

as one can go from x ∈ I to y ∈ I by taking at most N steps of size δ and the function

f can change by at most 1 with each step. So f is in fact bounded. Moreover, if ε> 0

we can cover I by finitely many intervals of length δ′ such that if |x − y | < δ′ then

| f (x)− f (y)| ≤ ε. But then if we partition I with the endpoints, P , of these intervals,

then on each sup f − inf f is at most ε and so U f (P )−L f (P ) ≤ ε.
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9.3 Fundamental Theorems of Calculus

We now proceed to the familiar theorems that allow us to evaluate integrals through

antiderivatives. We say F : I →R is an antiderivative for f : I →R on the interval I if

F ′ = f on I .

The Fundamental Theorems with boil down to the following property of the inte-

gral.

Lemma 9.6: Splitting the integral

Let I = [a,b] be an interval with endpoints a < b and suppose c ∈ (a,b). Then

f is integrable on I if and only if it is integrable on each of [a,c] and [c,b], and

if it is, we have ∫ c

a
f +

∫ b

c
f =

∫ b

a
f .

Proof. Suppose that f in integrable on I and let ε > 0. Suppose P is a partition

of I such that U f (P )− L f (P ) < ε. Then, adding c to P if necessary, which only

decreases U f (P )−L f (P ), we may assume c ∈P . Suppose P = {a = p0 < . . . < pN =
b} and p j = c. Let P1 = {p0, . . . , p j } and P2 = {p j , . . . , pN }. Then P1 is a partition of

[a,c], P2 is a partition of [c,b] and we have the identity

U f (P )−L f (P ) =U f (P1)−L f (P1)+U f (P2)−L f (P2).

Thus 0 ≤U f (P j )−L f (P j ) < ε for j = 1,2 and hence f is integrable on both subin-

tervals.

Conversely, suppose f is integrable on each of the subintervals, and for ε > 0,

we choose P1 and P2, partitions of each, such that U f (P j )−L f (P2) < ε/2. Then

P =P1 ∪P2 is a partition of I and

U f (P )−L f (P ) =U f (P1)−L f (P1)+U f (P2)−L f (P2) < ε.

Once we know that f is integrable, we can find P1 and P2 such that∫ c

a
f ≤U f (P1) ≤

∫ c

a
f +ε/2

and ∫ b

c
f ≤U f (P2) ≤

∫ b

c
f +ε/2.

But then P =P1 ∪P2 is a partition of [a,b] and so∫ b

a
f ≤U f (P ) =U f (P1)+U f (P2) ≤

∫ c

a
f +

∫ b

c
f +ε.
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So, letting ε→ 0 we find ∫ b

a
f ≤

∫ c

a
f +

∫ b

c
f .

The reverse inequality is similar and is left to the reader.

Theorem 9.1: Fundamental Theorem of Calculus, I

Let f : [a,b] → R be integrable. Then the function F (x) = ∫ x
a f is continuous.

Moreover, if f is continuous at x then F is differentiable at x and F ′(x) = f (x).

Proof. We have, for h > 0,

F (x +h)−F (x) =
∫ x+h

x
f

by Lemma 9.3. But f is bounded, say sup | f | ≤ M so

|F (x +h)−F (x)| ≤ hM .

By the Squeeze Theorem, |F (x +h)−F (x)| → 0 as h → from the right. The proof is

similar when h → 0 from the left.

Now, if f is continuous at x then for h sufficiently small f (x)−ε≤ f (x+t ) ≤ f (x)+ε
provided |t | ≤ h. Thus in fact

F (x +h)−F (x)

h
= 1

h

∫ x+h

x
f

and the right hand side lies between f (x)−ε and f (x)+ε. Thus∣∣∣∣F (x +h)−F (x)

h
− f (x)

∣∣∣∣≤ ε
and the second claim follows, at least as h → 0 from the right. Again, h → 0 from

the left is similar.

Theorem 9.2: Fundamental Theorem of Calculus, II

Let f : [a,b] →R be integrable. If F is an antiderivative of f on [a,b] then∫ b

a
f = F (a)−F (b).

Proof. Let P be a partition of [a,b] such that∫ b

a
f −ε≤ L f (P ) ≤U f (P ) ≤

∫ b

a
f +ε.
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Note that if pi < pi+1 are consecutive points of P then

F (pi )−F (pi+1) = F (pi+1)−F (pi )

pi+1 −pi
(pi+1 −pi ) = f (xi )(pi+1 −pi )

by the Mean Value Theorem, for some xi ∈ (pi , pi+1), and hence

F (pi )−F (pi+1) ≤ (pi+1 −pi ) sup
(pi ,pi+1)

f ,

and adding up over all i , we get

F (b)−F (a) =
N−1∑
i=1

F (pi+1)−F (pi ) ≤U f (P ) ≤
∫ b

a
f +ε.

Letting ε→ 0, we find

F (b)−F (a) ≤
∫ b

a
f .

Arguing similarly with L f we get

F (b)−F (a) =
N−1∑
i=1

F (pi+1)−F (pi ) =
N−1∑
i=1

(pi+1 −pi ) inf
(pi ,pi+1)

f = L f (P ) ≥
∫ b

a
f −ε,

hence

F (b)−F (a) ≥
∫ b

a
f .
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10
METRIC SPACES

Definition 10.1: Metric Space

A metric space (X ,d) is a set X endowed with a metric function

d : X ×X → [0,∞)

which satisfies the following rules:

1. d(x, x y) = 0 ⇐⇒ x = y ,

2. d(x, y) = d(y, x), and

3. the triangle inequality

d(x, y) ≤ d(x, z)+d(z, y)

for all x, y, z ∈ X .

We’ll give some examples below, not always with a proof, just yet.

Example: The most fundamental example is R (or a subset of R) endowed with

the distance

d(x, y) = |x − y |.
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The properties of the metric are easy to check, and you should recognize the trian-

gle inequality for d as merely the triangle inequality |x − y | ≤ |x − z|+ |z − y |.
Example: The space Rn with the l p -metric is defined by

d(x, y) =
(

n∑
i=1

|xi − yi |p
)1/p

.

Example: The space Rn with the l∞-metric is defined by

d(x, y) = max
1≤i≤n

|xi − yi |.

Indeed, d(x, y) ≥ 0 and (1), and (2) of the metric properties are easy. For the triangle

inequality, we have

d(x, y) = max
1≤i≤n

|xi−yi | ≤ max
1≤i≤n

(|xi − zi |+ |zi − yi |
)≤ max

1≤i≤n

(
|xi − zi |+ max

1≤i≤n
|zi − yi |

)
= d(x, z)+d(z, y).

Examine the two inequalities in the above line and be sure you understand them.

Example: The space of continuous function f : [0,1] → R is denoted C [0,1]. All

such functions are bounded, since [0,1] is compact. Thus it makes sense to define

d( f , g ) = sup
x∈[0,1]

| f (x)− g (x)|.

Check that this is a metric on the space of functions C [0,1]. The proof is much the

same as in the preceding example.

Definition 10.2: Open ball

If (X ,d) is a metric space, x ∈ X and ρ > 0 then the open ball of radius ρ

centred at x is the set

B(x,ρ) = {y ∈ X : d(x, y) < ρ}.

Definition 10.3: Open set

If (X ,d) is a metric space, a subset U ⊆ X is said to be open if for every x ∈U ,

there is some ρ = ρx > 0 (which can depend on x) such that B(x,ρx) ⊆U .

Lemma 10.1

The open sets in a metric space define a topology.
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Proof. The fact that X is open is trivial and the fact that ; is open is vacuous. Sup-

pose U is a collection of open sets and suppose x ∈⋃
U∈U U . Then x ∈U ′ for some

U ′, and since U ′ is open,

B(x,ρ) ⊆U ′ ⊆ ⋃
U∈U

U

for some ρ > 0. Meanwhile if x ∈U1∩·· ·Un for some open sets U1, . . . ,Un then there

are positive numbers ρ j such that

B(x,ρ j ) ⊆U j .

Letting ρ = min{ρ j : 1 ≤ j ≤ n}, we have ρ > 0 since the minimum is over a finite set.

One should verify that B(x,ρ) ⊆ B(x,ρ j ) for each j and then we deduce B(x,ρ) ⊆U j

for each j as well. Thus B(x,ρ) ⊆U1 ∩·· ·∩Un .

With open sets in hand we can define a continuous function between metric

spaces.

Definition 10.4: Continuity, uniform continuity

Let (X1,d1) and (X2,d2) be metric spaces and suppose f : X1 → X2 is a func-

tion. We say f is continuous at x ∈ X if for each ε> 0 there is some δ> 0 such

that d1(x, y) < δ implies d2( f (x), f (y)) < ε. We say that f is continuous if it’s

continuous at each x ∈ X . We say f is uniformly continuous if for ε> 0 there

is some δ> 0 such that d2( f (x), f (y)) for all x, y with d1(x, y) < δ.

Note that, for vanilla continuity, δ depends both on the value of ε and the point x

where f is continuous. For uniform continuity, δ is only allowed to depend on ε.

10.1 Convergence, Closed sets, and Completeness

Definition 10.5: Sequence, convergent sequence, Cauchy-

Sequence

A sequence in a metric space (X ,d) (or in a subset Y of X ) is a function

x : N → X (or x : N → Y ), but we will just write xn for x(n), and {xn} for

the whole sequence. The sequence is said to converge to x if for any ε > 0

there is a threshold N such that d(x, xn) < ε for n ≥ N , and we write xn → x.

The sequence is called Cauchy if for ε > 0 there is a threshold N such that

d(xm , xn) < ε for n,m ≥ N .
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Definition 10.6: Closed set

A set F in a metric space (X ,d) is closed if either of the following equivalent

conditions holds: any sequence {xn} of points in F has a limit in F , or, F c is

open.

Lemma 10.2

Convergent sequences are Cauchy.

Proof. Suppose xn → x. Let ε > 0 and choose N so large that d(xn , x) < ε/2 for

n ≥ N . Then if m,n ≥ N , we have

d(xm , xn) ≤ d(xm , x)+d(x, xn) < ε.

A partial converse of the above lemma is that Cauchy sequences are guaranteed

to converge once a potential limit has been identified.

Lemma 10.3

Suppose a Cauchy sequence {xn} has a subsequence converging to x. Then

xn → x

In general metric spaces, Cauchy sequences may not converge.

Definition 10.7: Complete space

The metric space (X ,d) is called complete if every Cauchy sequence in X con-

verges.

Theorem 10.1: T

e space Rwith the usual metric d(x, y) = |x − y | is complete.

Theorem 10.2

The metric space Rn with the l 2 metric d(x, y) = (∑n
i=1(xi − yi )2

)1/2
is com-

plete.

Proof. Let {xk } be a Cauchy sequence. Each xk is a vector, which we write as

xk = (xk (1), . . . , xk (n)),
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and the Cauchy condition tells us that(
n∑

i=1
(xk (i )−x j (i ))2

)1/2

< ε

provided j and k are sufficiently large. But then

max
i

|xk (i )−x j (i )| < ε

too, and this tells us that each sequence {xk (i )}k is a Cauchy sequence in R, and so

converges to some x(i ). We claim xk → x, for if ε> 0 we can find some N such that

|xk (i )−x(i )| < ε/
p

n whenever k ≥ N , and from this

d(xk , x) =
(

n∑
i=1

(xk (i )−x(i ))2

)1/2

< ε.

The idea of the above theorem is to “bootstrap” the completeness of R to that of

Rn . The vectors xk = (xk (1), . . . , xk (n)) can just as well be thought of as functions

xk : [N ] →R. In that spirit, we also have the following.

Theorem 10.3

The space C [0,1] with metric

d( f , g ) = sup
x

| f (x)− g (x)|

is complete.

To prove this we’ll need a bit of nomenclature concerning the convergence of

functions.

Definition 10.8: Pointwise and uniform convergence

Let X be a subset of R and for each n, suppose fn : X → R is a function. We

say fn → f : X →R if for each x ∈ X , and for each ε> 0 there is an N such that

| fn(x)− f (x)| < ε once n ≥ N . In other words, for each x ∈ X , the sequence

{ fn(x)}n of real numbers converges to f (x). This convergence is called uni-

form if for ε > 0 there is an N such that | fn(x)− f (x)| < ε for all x, that is, N

depends on ε, but not on x.
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Lemma 10.4

If fn : X → R is a sequence of continuous (resp. uniformly continuous) func-

tions converging uniformly to f : X → R, then f : X → R is also continuous

(resp. uniformly continuous).

Proof. Let x, y ∈ X . Let ε> 0 and suppose n is so large that | fn(z)− f (z)| < ε/3 for all

z ∈ X . Choose δ= δ(x,ε) (resp. δ= δ(ε)) so that |x − y | < δ implies | fn(x)− fn(y)| <
ε/3. Then

| f (x)− f (y)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(y)|+ | fn(y)− f (y)| < ε/3+ε/3+ε/3.

We can also upgrade Lemma 10.1 to the uniform convergence setting.

Lemma 10.5

Suppose { fn : X →R}n is uniformly Cauchy sequence of functions in the sense

that for ε> 0 and m,n sufficiently large

| fn(x)− fm(x)| < ε

holds for all x ∈ X . Furthermore, suppose there is a subsequence { fnk } con-

verging uniformly to f . Then fn → f uniformly as well.

Proof. Let N be so large that | fnk (x)− f (x)| < ε/2 for all x ∈ X once k > N and fur-

thermore, that | fn(x)− fm(x)| < ε/2 for all x ∈ X once m,n ≥ N . Then

| f (x)− fn(x)| ≤ | f (x)− fnk (x)|+ | fnk (x)− fn(x)| < ε

provided k,n > N (using, implicitly, that nk ≥ k).

Proof of Theorem 10.1. Let { fn} be a Cauchy sequence of functions. Then

sup
x

| fn(x)− fm(x)| < ε

provided m,n are sufficiently large. Thus for any x, if n,m are large enough, we

know | fn(x)− fm(x)| < ε, which tells us the sequence { fn(x)}n is Cauchy, and hence

convergent to some number f (x). Thus there is a function f : [0,1] → R which we

have identified as a potential limit of our sequence. However, it’s hard to tell if f

should be continuous (and hence in C [0,1]) just yet. More to the point, we know

that for each x, fn(x) → f (x), which is pointwise convergence, but for fn → f in our

metric, we need

sup
x

| fn(x)− f (x)| < ε
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which is uniform convergence.

So, we would like fn(x) to converge uniformly. But actually, the metric on C [0,1]

already tells us that a Cauchy sequence is uniformly Cauchy, so we need only iden-

tify a uniformly convergent subsequence and apply the preceding lemma. To that

end, for k ∈N, let nk be chosen in an increasing fashion so that

sup
x

| fn(x)− fm(x)| < 1

2k

when n,m ≥ nk , and in particular, so that

sup
x

| fnk (x)− fnk+1 (x)| < 1

2k
.

Now we apply the “summation trick"

fnk (x) = fn1 (x)+
k−1∑
j=1

fnk+1 (x)− fnk (x).

Because fn(x) → f (x), we know fnk (x) → f (x) as well, and so, as a series

f (x) = fn1 (x)+
∞∑

j=1
fnk+1 (x)− fnk (x)

and

| f (x)− fnk (x)| =
∣∣∣∣∣ ∞∑

j=k
fnk+1 (x)− fnk (x)

∣∣∣∣∣≤ ∞∑
j=k

∣∣ fnk+1 (x)− fnk (x)
∣∣< ∞∑

j=k
2− j = 21−k ,

which gives uniform convergence.

Definition 10.9: Closure

Let Y be a set in a metric space (X ,d). The closure of Y , denoted Y , is the

intersection of all closed sets containing Y , or equivalently,

Y = {z : there is some sequence {yn} in Y with yn → z}.

The closure of Y is closed, and is the smallest closed set containing Y .

Definition 10.10: Denseness

A set B is said to be dense in A if A ⊆ B .
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Theorem 10.4: Existence of Completion

For any metric space (X ,d), there is a complete metric space (X̃ , d̃) and an

injection

i : X → X̃

such that

d(x, y) = d̃(i (x), i (y))

for x, y ∈ X and i (X ) is dense in X̃ .
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11
NORMED VECTOR SPACES

A particularly useful, and frequently occurring, type of metric occurs when the un-

derlying space has the additional structure of a vector space. We have already seen

some of these spaces in the previous chapter.

Definition 11.1: Vector space norm

A norm on a (real) vector space V is a function ∥∥̇ : V → R with the following

properties.

Positivity For all v ∈V , ∥v∥ ≥ 0 with equality if and only if v = 0.

Scaling For all v ∈V and a ∈R, ∥av∥ = |a|∥v∥.

Triangle inequality For all v,w ∈V , ∥v+w∥ ≤ ∥v∥+∥w∥.

Of course the relevance to metric spaces is the following.

Lemma 11.1: Norms make metrics

If ∥ · ∥ is a norm of a vector space V then ∥ · ∥ induces a metric d given by

d(v,w) = ∥v−w∥.
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Proof. That d(v,w) ≥ 0 with equality if and only v = w is precisely the positivity

property of ∥ ·∥. Symmetry follows from scaling as

d(v,w) = ∥v−w∥ = ∥− (w−v)∥ = |−1|∥w−v∥ = d(w,v).

The triangle inequality of the norm translates to one for the metric in the usual

fashion: if u,v,w ∈V then

d(v,w) = ∥v−w∥ = ∥(v−u)+ (u−w)∥ ≤ ∥v−u∥+∥u−w∥ = d(v,u)+d(u,w).

One of the most ubiquitous examples norms are the l p -metrics defined in the

previous chapter. To establish that they do really define norms, we’ll need to do a

bit of work. Ultimately this boils down to convexity.

Definition 11.2: Convex function

A function f : I →R, defined on some interval I ⊆R is said to be convex if for

x, y ∈ I , we have the inequality

f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y), for all t ∈ [0,1].

The function is called strictly convex if strict inequality holds for t ∈ (0,1)

whenever x and y are distinct.

This definition is perhaps most nicely interpreted geometrically. For that we need

the convex hull.

Definition 11.3: Convex Hull

The (closed) convex hull of a finite set X = {v1, . . . ,vN } of points in a vector

space is the set

con(X ) = {t1v1 +·· ·+ tN vN : t1, . . . , tN ∈ [0,1], t1 +·· ·+ tN = 1}.

Example: If u,v are distinct points in a vector space V then con({u,v}) is just the

line segment that connects them.

If we consider the graph of f : I →R Γ= {(x. f (x)) : x ∈ I }, then given N numbers in

I , say x1, . . . , xN , we get on the graph which lie inR2. Let X = {(x1, f (x1)), . . . , (xN , f (xN ))}.
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Lemma 11.2: Geometric formulation of convexity

The function f : I → R is convex if and only if the convex hull

con
(
{(x1, f (x1)), . . . , (xN , f (xN ))}

)
lies above the graph of f for any finite set

of numbers {x1, . . . , xN } ⊆ I .

Proof. Suppose first that for any finite set of numbers {x1, . . . , xN } ⊆ I , we know

con
(
{(x1, f (x1)), . . . , (xN , f (xN ))}

)
lies above the graph of f . Let x, y ∈ I be arbitrary,

then con({(x, f (x)), (y, f (y))}) lies above the graph of f . But this means that for any

t ∈ [0,1],

t (x, f (x))+ (1− t )(y, f (y)) = (t x + (1− t )y, t f (x)+ (1− t ) f (y))

lies above (i.e. the second coordinate is larger) the point on the graph with the same

first coordinate, which is (t x + (1− t )y, f (t x + (1− t )y)), so

t f (x)+ (1− t ) f (y) ≥ f (t x + (1− t )y).

We prove the converse for N ≥ 2 by induction on N , the base case being equiv-

alent to convexity as we just showed. Suppose x1, . . . , xN+1 ∈ I . We have to show

t1(x1, f (x1))+ ·· · + tN+1(xN+1, f (xN+1)) lies above the point on the graph with the

same first coordinate, which is (t1x1+·· ·+tN+1xN+1, f (t1x1+·· ·+tN+1xN+1)), which

means

f (t1x1 +·· ·+ tN+1xN+1) ≤ t1 f (x1)+·· ·+ tN+1 f (xN+1).

We can assume tN+1 ̸= 1 or else t1 = ·· · = tN = 0 and there is nothing to do. Grouping

the first N terms,

t1x1 +·· ·+ tN xN + tN+1xN+1 = (t1x1 +·· ·+ tN xN )+ tN+1xN+1.

Now t1 +·· ·+ tN = 1− tN+1 so, we can rewrite this as

(1− tN+1)
t1x1 +·· ·+ tN xN

1− tN+1
= (1− tN+1)y

where

y = t1x1 +·· ·+ tN xN

1− tN+1
= t1

1− tN+1
x1 +·· ·+ tN

1− tN+1
xN

is just a convex combination of the numbers x1, . . . , xN ∈ I and so lies in I too. But

then, by the definition of convexity

f ((1− tN+1)y + tN+1xN+1) ≤ (1− tN+1) f (y)+ tN+1 f (xN+1)

and by induction

f (y) ≤ t1

1− tN+1
f (x1)+·· ·+ tN

1− tN+1
f (xN ).

The concludes the inductive step and the proof.
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An immediate consequence of this is the following inequality which is of funda-

mental importance in analysis.

Corollary 11.1: Jensen’s Inequality

Let I be an interval and f : I → R be a function. If x1, . . . , xN ∈ I and φ is

a function convex on some interval containing f (x1), . . . , f (xN ) then for any

t1, . . . , tN ∈ [0,1] such that t1 +·· ·+ tN = 1, we have

φ

(
N∑

n=1
tn f (xn)

)
≤

N∑
n=1

tnφ( f (xn)).

Proof. This is really just a change in notation. Let yn = f (xn). Then all of the yn

belong to the interval

J = [
min{ f (xn) : 1 ≤ n ≤ N },max{ f (xn) : 1 ≤ n ≤ N }

]
.

The function φ is supposed to be convex on J and so by Lemma 11, we have

φ

(
N∑

n=1
tn f (xn)

)
=φ

(
N∑

n=1
tn yn

)
≤

N∑
n=1

tnφ
(
yn

)= N∑
n=1

tnφ
(

f (xn)
)

.

Verifying convexity is most easy for differentiable functions as seen in the follow-

ing lemma.

Lemma 11.3

Let I be an open interval. A differentiable function φ : I → R with non-

decreasing derivative is convex on I .

Proof. Indeed, suppose x, y ∈ I with x < y . Then by the Mean Value Theorem

φ
(
t x + (1− t )y

)−φ(x)

(1− t )(y −x)
=φ′(a), for some a ∈ (

x, t x + (1− t )y
)

,

while
φ(y)−φ(

t x + (1− t )y
)

t (y −x)
=φ′(b), for some b ∈ (

t x + (1− t ), y
)

.

But then a < b and so φ′(a) ≤φ′(b) which tells us

t (φ(t x + (1− t )y)−φ(x)) ≤ (1− t )(φ(y)−φ(t x + (1− t )y))

and this rearranges to show the convexity of φ.
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With this, we can deduce another ubiquitous inequality of analysis.

Theorem 11.1: Hölder’s Inequality (discrete version)

Let p ≥ 1 and let q = p
p−1 so that 1

p + 1
q = 1. If a1, . . . , aN ,b1, . . . ,bN ∈ R are

non-negative then

N∑
n=1

anbn ≤
(

N∑
n=1

ap
n

)1/p (
N∑

n=1
bq

n

)1/q

.

Proof. Let B = bq
1 +·· ·+bq

N so that tn = bq
n /B satisfies tn ∈ [0,1] and t1 +·· ·+ tn = 1.

We may assume that no bn vanishes or else we just remove it. We let xn = anb1−q
n

so that
N∑

n=1
tn xn = 1

B

N∑
n=1

bq
n anb1−q

n = 1

B

N∑
n=1

anbn .

Since p ≥ 1, the function xp is convex on (0,∞) as its derivative is pxp−1 which is

non-decreasing. Jensen’s inequality then says(
N∑

n=1
tn xn

)p

≤
n∑

n=1
tn xp

n =
N∑

n=1

bq
n

B
ap

n bp(1−q)
n .

Since p(1−q) =−q the right hand side is just

1

B

N∑
n=1

ap
n .

So, taking p’th roots
N∑

n=1
tn xn ≤ 1

B 1/p

(
N∑

n=1
ap

n

)1/p

.

Finally, multiplying through by B gives

N∑
n=1

anbn ≤ B 1−1/p

(
N∑

n=1
ap

n

)1/p

= B 1/q

(
N∑

n=1
ap

n

)1/p

=
(

N∑
n=1

bq
n

)1/q (
N∑

n=1
ap

n

)1/p

.

We complete this tour of inequalities with the triangle inequality for the the l p -

norm, known as Minkowski’s inequality.

Theorem 11.2: Minkowski’s Inequality (discrete version)

Let p ≥ 1. Then, if a1, . . . , aN ,b1, . . . ,bN ∈R, we have(
N∑

n=1
|an +bn |p

)1/p

≤
(

N∑
n=1

|an |p
)1/p

+
(

N∑
n=1

|bn |p
)1/p

.
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Proof. If p = 1 then this just follows from the triangle inequality:

|an +bn | ≤ |an |+ |bn | =⇒
N∑

n=1
|an +bn | ≤

N∑
n=1

|an |+ |bn |.

So we assume p > 1. Then

N∑
n=1

|an +bn |p =
N∑

n=1
|an +bn ||an +bn |p−1 ≤

N∑
n=1

(|an |+ |bn |)|an +bn |p−1. (2)

By Hölder’s inequality (recalling q = p
p−1 )

N∑
n=1

|an ||an +bn |p−1 ≤
(

N∑
n=1

|an |p
)1/p (

N∑
n=1

|an +bn |q(p−1)

)1/q

=
(

N∑
n=1

|an |p
)1/p (

N∑
n=1

|an +bn |p
)1/q

.

Similarly,
N∑

n=1
|bn ||an +bn |p−1 ≤

(
N∑

n=1
|bn |p

)1/p (
N∑

n=1
|an +bn |p

)1/q

so upon plugging these into (2) and rearranging, we arrive at the desired conclu-

sion.
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